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Drought frequency, intensity, and
exposure have increased due to historical
land use and land cover changes

Check for updates
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Drought, a marked deficiency of surface water, has a wide adverse impact on the environment,
agriculture, and the socio-economy. The global impact of land use changes on drought features and
associated exposures to droughts, however, remains largely unknown. In this study, the changes of
drought features are estimated by using the model simulations with and without land use change. We
show that historical land use changes since 1850, mainly deforestation and crop expansion, has
increased the drought frequency, duration, and severity over half of the global land area. Regions with
greater activity tend to experience stronger exacerbation of drought events. Owing to their increasing
frequency and prolonged duration, populations, croplands and forests are increasingly exposed to
drought events, which poses serious potential impacts on human health, agriculture, and forest
ecosystems. The enhanced drought events could be substantially alleviated by potential reforestation
activity. Our results provide useful information for land-management-related policy-making.

Droughts refer to a period of abnormally dry weather that persists
long enough to cause a serious hydrological imbalance1. Droughts
can adversely impact various components of natural systems and
economic sectors, including but not limited to the deterioration of
the ecological environment and wildlife habitat2, reductions of crop
yield3,4, water resources5 and hydropower generation6, as well as
increasing risk of forest fires7,8. The latter can further undermine the
ability of carbon uptake of terrestrial ecosystems and result in more
emissions of carbon dioxide into the atmosphere, exacerbating cli-
mate change9,10.

Human activities and the resultant global warming have been identi-
fied as the main causes of the increasing frequency and intensity of drought
events11–13. The observed change, however, is the response of drought to all
anthropogenic activities. One such activity is the land use and land cover
change (LULCC), which manifests primarily as the expansion of croplands
and pasturelands at the expense of natural forested and non-forested lands
throughout history. Despite the dominant role of greenhouse gases (GHGs)
in the global climate, LULCC has been reported to have a greater impact
than GHGs do on the regional hydrological cycle14. Biophysically, forests
can boost evapotranspiration (ET), and thereby increasing precipitation (P)

locally and in downwind regions15,16. Conversely, deforestation usually leads
to reductions in P17.

While the important role of LULCC in modifying surface
temperature18 and water resources19,20 has been recognized, how LULCC
impacts drought characteristics is far from clear. Multiple reasons are
responsible for this gap. First, there are no direct observational records of
LULCC impact, as our observed signal is the climate response to the total
anthropogenic and natural forcing agents, which is further complicated by
internal variability from interannual to multidecadal timescales. It is nearly
impossible to separate the impact of LULCC from pure observations alone.
Second, in the limited observational studies, the impact of LULCC is usually
quantified by comparing P observed at two adjacent land types, assuming
the same background climate at both locations17,21. By equating the differ-
ence from observations made at the same time to changes of land use over
time, these studies imply a space-for-timeapproach.A similar approach is to
compare the hydroclimate conditions before and after LULCC at a fixed
site22. Themain limitationof this kindof study is that the results reveal direct
effects of LULCC only, but miss the indirect effects arising from changes in
circulation and climate feedback, as these effects were canceled out in the
comparison. Besides, the changes in the mean state of P do not necessarily
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reflect the changes in the extreme climatic events, as changes in variability
alone (e.g., longer dry spells) without changes in the mean state can sub-
stantially increase the occurrence of extreme hydrological events23–25. Third,
most published studies only considered the P deficit when analyzing
LULCC-induced droughts26,27, neglecting the crucial role of temperature,
ET, or potential evapotranspiration (PET), which have been shown to be
equally important as P inmodifyingwater balance24,28,29. Lastly, the potential
impact of LULCC-induced drought on human society and agriculture (e.g.,
exposure) is rarelymeasured. Drought events impact human societymainly
by affecting human health30, crop yield4, and natural ecosystem31. An esti-
mation of exposure change could provide more information to evaluate
drought impact and help to reduce the exposure of populations and crop-
lands to drought risks32.

A global assessment of LULCC-induced changes on drought is still
lacking, as most previous studies are focusing on regional scales, such as
the Amazon or a river basin33–35. However, the LULCC impact has been
reported to be location dependent18,36. It is, therefore, not known whether
the conclusions drawn at the regional scale are applicable to other
regions. In addition, reforestation and forest-protection programs have
been pledged worldwide (e.g., the Bonn Challenge) to combat water
stress, desertification, and ecosystem degradation37. The impact of
deforestation/reforestation on droughts, if any, can provide scientific
guidance for policymakers planning reforestation projects.

In this study, we investigate the impact of historical LULCC since
1850 on meteorological drought from the perspective of its frequency,
duration, severity, and intensity (see “Methods” section), aiming to
bridge these knowledge gaps. To quantify the drought characteristics, the
3-month standardized precipitation-evapotranspiration index (SPEI),
which considers roles of both P and PET in determining droughts, is
employed in this study38. Our results show that historical LULCC has
increased the frequency, duration, severity, and intensity of drought over
half of the global land, and the exacerbation of drought events tends to
occur in regions with stronger deforestation. The increasing drought
frequency and intensity, however, could be substantially alleviated by
reforestation and/or avoided deforestation. These findings provide sci-
entific evidence to forest-related policymakers that, in addition to carbon
uptake, reforestation can also provide hydrological benefits by alleviating
drought events.

Results
Historical LULCC
Two sets of model simulations are employed in this study. The first simu-
lation is the standard historical simulation (hist), which includes all
anthropogenic (e.g., greenhouse gases and aerosols) and natural (solar and
volcanic activity) forcings, aswell as the evolvingLULCC from1850 to2014.
The second simulation is identical to the hist simulation but with LULCC
fixed at the 1850 level (hist-noLu). The LULCC impactwas quantified as the
difference between the two simulations (hist minus hist-noLu; “Methods”
section). Both simulations were run in coupled mode. Thus, the LULCC
impact quantified here includes both the direct effects arising from changes
in the surface energy balance and the indirect effects arising from climate
feedback to LULCC. The period of 1950–2014 (65 years) was analyzed in
this study. It is noted that historical LULCC does not modify the con-
centration of atmospheric carbondioxide in both simulations; thus, only the
biophysical effects related to changes in surface properties (e.g., albedo,
aerodynamic roughness, and evapotranspiration efficiency) and associated
atmospheric feedbacks are identified here.

Historical LULCC since 1850 has manifested mainly as the loss of
primary and secondary land (psl, both forested and non-forested) and
the concomitant expansion of cropland, pasture, and rangeland. Speci-
fically, psl decreased by ~21.3% of the global land area (28.5Mkm2) in
2014 relative to that in 1850, including roughly 6.6 Mkm2 forest loss. In
the meantime, cropland (+6.4%), pasture (+3.5%), and rangeland
(+10.7%) expanded extensively by the indicated fractions (Fig. 1 and
Supplementary Fig. 1).

Global responses of drought events to LULCC
In this study, drought events are identified based on the SPEI time series of
each grid. The SPEI is a standardized index formulated based on P and PET
(see “Methods” section), with negative (positive) values indicating surface
dryness (wetness). For a given grid, a drought event was identified when the
SPEI value was smaller than –1 for at least 3 consecutive months. The
duration is defined as the number ofmonths of each drought event. Severity
is defined as the cumulative summation of the SPEI in absolute values in
each month within a drought event. The intensity is defined as the mean
severity of each month, which is estimated by dividing the severity by the
duration. The frequency at each grid is the total number of drought events
within the 65-year period. The drought events were identified at each grid in
each model for both simulations. By taking their differences, the impact of
LULCC was isolated.

Figure 2 shows the changes in the drought characteristics due to his-
torical LULCC (model consistency is shown in Supplementary Fig. 2).
About half of the global land (withoutAntarctica) shows increasing drought
frequency, longer duration, enhanced severity and intensity in drought
events (Fig. 2). Averaged globally, all four characteristics show positive
changes, denoting an increase in drought frequency and the exacerbation of
drought events. A substantial fraction of such positive changes is con-
tributed by the changes from the deforested areas (grids with psl changes
<−5%). On the other hand, the reforested areas (grids with psl changes
≥5%) consistently show negative changes, indicating an alleviation of
drought events. When spatially aggregated, the distributions also shifted
significantly (p < 0.001) in all four aspects of droughts. Taking frequency as
an example (Supplementary Fig. 3), only 5% of the global land area has a
mean frequency greater than 22 within the 65-year period in the hist-noLu
experiment, whereas in thehist experiment, approximately 31%of the global
landareahas a frequencygreater than22. Similar results are alsoobserved for
intensity, duration, and severity, but are less pronounced for the latter two.
When the drought events are binned by duration (Supplementary Fig. 4a),
the frequency of drought in the hist simulation is higher than that in the hist-
noLu simulationacross all bins and statistically significant for events lasting6
months or longer. Similarly, the drought frequency increased for all severity
and intensity levels, except for those with a severity between 4 and 5 (Sup-
plementary Fig. 4b, c). These analyses demonstrate that historical LULCC
has increased the frequency of drought events at all timescales globally and
exacerbated drought events at most severity levels.

Regional responses of drought events to LULCC
To better evaluate the drought responses to LULCC, a closer examination is
performed on a regional scale. 9 regions with substantial increases in the
drought frequency are selected here (red boxes in Fig. 2a; the boundaries are
listed in Supplementary Table 3). Supplementary Fig. 5 shows the spatially
aggregated whisker plots for all four characteristics of the 9 regions. 5 out of
these 9 regions, including South America, North Europe, India, Southeast
Asia, and Australia, show significant changes in all four characteristics of
droughts. Meanwhile, a few regions, such as East Asia, show significant
changes only in frequency and limited changes in other aspects.

Figure 3 displays the joint probability distributions constructed based
on duration and intensity for these regions. For each region, a bivariate
kernel density is generated based on the MMM values of duration and
intensity for all grids within the region. This analysis allows us to observe
shifts in the distributions of drought characteristics that are not clearly
visible in the mean change. We found that, according to a two-sample
Kolmogorov–Smirnov test, all 9 regions exhibited significant (p < 0.001)
shifts in the joint distributions. Specifically, all 9 regions show wider dis-
tributions of the drought intensity in the hist simulations, with changes
found at both tails of the distributions. The shifts in duration, however, are
not obvious in Central and Eastern North America, East Europe, and two
Asian regions. Jointly, the distributions of all regions in the hist simulation
(red) show a larger spread than those of the hist-noLu simulation (blue).
Besides, the distributions in all regions except East Europe and East Asia
shifted to the upper-right, indicating that the drought events in these 7
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regions are getting both longer-lasting and more intense. At the same time,
some regions, such as Central and Eastern North America, South America,
and East Asia, also experience shorter and less intense droughts. The above
analyses demonstrate that historical LULCC not only increased drought
frequency in these regions but also altered the concurrent nature of duration
and intensity, despite the negligible changes in the mean value.

Relationships between the drought response and LULCC
To investigate the possible linkage between LULCC activity and changes in
drought characteristics, we binned the changes in frequency as a function of
psl fraction changes at intervals of 10% (Fig. 4a). Regions with stronger
deforestation activity (more negative psl fraction changes) tend to have
larger increases in drought frequencies. On average, the change of drought
frequency increases by 0.27 in response to every 10% loss in the psl fraction.
Similar results are also observed for other characteristics -- deforestation
generally results in a longer duration and stronger severity and intensity of
drought events locally. Specifically, the changes in mean duration, severity,
and intensity increase by 0.012 months, 0.035, and 0.003, respectively, in
response to every 10% loss in thepsl fraction (Fig. 4b–d), demonstrating that
deforestation tends to locally increase drought risk and exacerbate drought
events.

The next question is how LULCC or deforestation activity increases
drought frequency? The drought events in the current study are defined
based on the standardized water deficit (P− PET) of the surface. Supple-
mentary Fig. 6 shows the spatial changes in P, PET, and P− PET inMMM
values. It is seen that all the regions featuredwith increasing frequency show
strong decreases in P− PET (Supplementary Fig. 6c), with a pattern cor-
relation of −0.70 (p < 0.001). In some regions, the negative Δ(P− PET) is

mainly due to negative ΔP, such as C.E. North America, whereas in other
regions, ΔPET plays a more dominant role, such as Tropical Africa and
India. In general, deforestation tends to reduce P and increase PET, thereby
decreasing P− PET. Such impact is more pronounced with increasing
LULCC magnitude. Thus, the increased drought frequency reported here
could bepartially explainedby the shift in themeanP− PET. It is noted that
the mechanisms behind droughts are rather complex and intertwined with
many components of the climate system. A lengthened interval between
precipitation events without change in the mean value could possibly
modify drought frequency and intensity24,25. The detailed mechanisms of
drought changes are beyond the scope of this study.

Changes in exposure to droughts
Given the increasing frequency and duration, it is expected that human and
terrestrial ecosystems will experience more drought events and, conse-
quently, more disturbances from droughts. In this section, we estimate the
exposure of populations, croplands, and forests to drought events (“Meth-
ods” section), providing insights and implications for evaluating potential
drought impacts onhumanhealth, agriculture, and terrestrial ecosystems, as
well as the socio-economy.

Drought events can increase the risk of water-borne, vector-borne
diseases, such as Diarrhea, due to the low availability of clean water39, and
increase the risk of respiratory diseases through reduced air quality due to
increased wildfires, erosion, and associated particulate matter30,40, posing
serious health impacts on human society41. Using the gridded population
data42 and the simulated response of drought frequency to LULCC, we
estimated the population exposure to increasing drought frequency driven
by historical LULCC in each grid cell. The results were then aggregated to
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Fig. 1 | Historical land use and land cover change. a Fractional change of psl in 1995–2014 relative to 1850. b Same as (a), but for agricultural fields, which are combinations
of crops, pastures, and rangelands. c Time series of the global land area fractions for each land use type in 1850–2014.
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the country/regional scale and are shown in Fig. 5a. Globally, the population
exposure increased by ~11422million person-months (mpm) per decade due
to LULCC. Among the 220 countries/regions analyzed here, 105 countries/
regions, which are home to 84% of the world’s total population, show
increasing exposure. Specifically, population exposure increased by
4400mpm decade−1 and 2333mpm decade−1 in India and China, respec-
tively, making them the top two countries on the list. Nigeria, Indonesia,
Brazil, and theUSA also show substantial increases. The decreasing exposures
are mainly seen in West Asia and South Europe regions, where the drought
frequency mostly decreases in response to LULCC (Figs. 5a and 2a). When
normalizing the total exposure by global population, a person experienced
extra 1.6 months (~48 days) of drought per decade due to historical LULCC
(Fig. 5b). At the country level, Paraguay shows the largest increase per capita,
adding 9.2 months of drought per person every decade, which is followed by

Uruguay (5.2 months person−1 decade−1), Gambia (4.2 months person−1

decade−1), and Nicaragua (4.1 months person−1 decade−1).
Multiple lines of evidence suggest that droughts can seriously reduce

crop yield43,44, mainly via lowered soil water45, higher temperature46, pest
outbreaks and subsequent chemical control47, soil degradation andnutrition
loss48, etc. The reduced crop yield may further cause malnutrition, food
insecurity (e.g., inflation of food price), and psychological distress49–51.
Therefore, it is informative to examine the changes in crop exposure to
increasing drought frequency. Altogether, the cropland exposure to
droughts increased by 26.6Mkm2 months decade−1, with India (5.5Mkm2

months decade−1) and Brazil (3.2Mkm2 months decade−1) leading the
increases, followed by Nigeria, Argentina, China, and Australia (Fig. 5c).

Another ecosystem that is sensitive to drought disturbances is the
forest. Drought events can severely reduce carbon uptake31,52 and increase
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the risk of forest fires8,53, both of which can increase the concentration of
CO2 in the atmosphere and further amplify global warming. Globally, the
forest exposure increases by 28.5Mkm2 months decade−1 (Fig. 5d), with
the largest increases found in Russia (5.4Mkm2 months decade−1) and
Brazil (5.2Mkm2 months decade−1). Forests in the USA, China, Indo-
nesia, and Congo (Kinshasa) are also increasingly exposed to drought
events.

In addition to the total exposure changes, we also analyzed the relative
changes in exposure, in which the total exposure changes were scaled by the
total exposure in the hist-noLu simulation (Fig. 6). The globalmean relative
increases in exposure are 13.6%, 14.3%, and 6.5% for population, crop, and
forests, respectively. Overall, the countries in South America and tropical
Africa are more sensitive to historical LULCC than the countries in other
regions. Paraguay has the highest relative change in all three respects.
Uruguay, Argentina, Nigeria, Thailand, and Australia also show high rela-
tive changes in exposure.

The numbers in the parentheses after the country names in
Figs. 5 and 6denote the rank of this country in the LULCCmagnitude based
on the loss of psl area, with smaller numbers representing stronger LULCC
activity (Supplementary Fig. 7). Some countries only hadmoderate LULCC
activity, but experienced much larger increases in exposure, such as Phi-
lippines andVietnam in total population exposure (Fig. 5a) and PapuaNew

Guinea in total forest exposure (Fig. 5d). On the other hand, Kazakhstan,
SaudiArabia, andMexicohas the 5th, 8th, and9th largest LULCCamong all
countries, respectively (Supplementary Fig. 7), but they are not on any of the
list, implying an inequality between the LULCC implementers and con-
sequence sufferers.

Impact of potential reforestation
The above analyses illustrate that historical LULCC has increased
drought risk and exacerbated drought events, especially in the deforested
areas. The last question is whether reforestation can alleviate the drought
conditions. To answer this question, we estimated the drought char-
acteristics in two sets of model simulations with and without reforesta-
tion under the shared socioeconomic pathway (SSP) 3-7.0 scenario54

(“Methods” section). The SSP3-7.0 scenario represents a medium-to-
high emission pathway for the 21st century, with a global mean tem-
perature rise of ~2.8 K in 2100 relative to that in 202055. Globally, the land
area fraction of psl will decrease from 52.3% in 2014 to 47.0% in 2100
under the standard SSP3-7.0 simulation but increase to 54.5% by 2100 for
the reforestation simulation (Supplementary Fig. 8). Differences between
these two simulations (SSP3-7.0 with reforestation minus the standard
SSP3-7.0) isolate the impact of potential reforestation on droughts under
a warming climate.
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The impacts of reforestation on drought conditions are shown in
Fig. 7 and the model consistencies are shown in Supplementary Fig. 9.
Specifically, approximately half of the global land area shows decreasing
drought frequency due to reforestation, and statistically significant
changes are observed in tropical Africa, Eastern North America and
India where large reforestation activities occur (Fig. 7a). On the whole,
the global land shows decreasing drought frequency with statistical
significance at the p = 0.05 level, which is largely contributed by refor-
estation grids (Fig. 7a, bar plot). Similar results are also observed for
duration, severity, and intensity (Fig. 7b–d), but are not statistically
significant. When binned by duration, severity and intensity, the fre-
quency from reforestation simulations also shows decreases over most
timescales and levels (Supplementary Fig. 10). Similar to historical
results, the drought conditions tend to be mitigated in reforested regions
and exacerbated in deforested regions (Fig. 7 and Supplementary
Fig. 11). In summary, reforestation and/or avoided deforestation can
substantially lower drought risk and alleviate drought events under a
warming climate.

Discussion
Using the latest coupled model simulations with and without historical
LULCC, our study reveals that historical LULCC has increased the SPEI-
based drought frequency and exacerbated drought events in duration,

severity, and intensity on both global and regional scales. More longer-
lasting and more intense drought events are observed in some regions,
such as India and South America, owing to historical LULCC. The
deterioration of drought events tends to occur in regions with strong
deforestation activity. The increasing drought frequency significantly
increased the exposure of populations, croplands, and forests to
droughts, posing serious potential impacts on human health, agriculture,
and forest ecosystems. Further analyses demonstrate that reforestation
has the potential to alleviate drought conditions. This provides a scien-
tific foundation and guidance for forest-related policymakers. The spatial
patterns in the changes of drought frequency (Fig. 2) and mean P− PET
(Supplementary Fig. 6) reported here are qualitatively consistent with
one recent evaluation, in which large-scale idealized deforestation causes
reductions in the mean SPEI and thus, a drying surface56. However, the
results could not be further compared due to different metrics used.
Moreover, different locations and magnitudes of deforestation, as well as
different timescales of model integration, all contribute to discrepancies.
Compared with the idealized deforestation simulations, our evaluation
represents a more realistic LULCC impact and provides more accurate
information to local policymakers.

Several implications could be drawn from this study. First, most
policymakers only pay attention to carbon uptake and local temperature
cooling57,58 when planting trees to mitigate climate change59. Our results
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Fig. 4 | Changes in drought characteristics as a function of psl fraction changes.
Changes in drought frequency (a), duration (b), severity (c), and intensity (d) binned
by the fraction changes in primary and secondary land (psl) at intervals of 10%.
Negative (positive) psl fraction changes denote deforestation (reforestation). Black
dots are the multi-model mean (MMM) values of each bin, while vertical lines
denote the 95% CI of each bin. The red lines are least-squares linear regressions

based on the MMM values of each bin, with the slope and correlation coefficient
values (r) shown at the upper-right corner of each panel. The red shaded regions are
the 95% regression estimates based on a bootstrap technique. The inserted gray bar
plot in (a) is land fractions of each bin relative to the global land (without Antarctica)
on a logarithmic scale.
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demonstrate that reforestation could also provide hydrological benefits
by alleviating drought conditions in climate mitigation, which should be
considered in future land management policy-making. Second, the
inequality between LULCC performers and sufferers (Fig. 5) indicates a
non-negligible role of indirect effects of LULCC arising from changes in
circulations and the background climate60,61. To put it differently, a
country/region that plans to perform reforestation should consider not
only the hydrological effects within its borders but also the effects it may
cause in remote countries/regions19. Conversely, the consequence of
reforestation within its borders is also subject to the impact of LULCC
activity in remote regions. Third, the historical LULCC activities are
mainly characterized by deforestation and concomitant crop expansion.

However, ironically, this process can simultaneously reduce crop yield
and degrade the remaining forests through the biophysical effects of
droughts (Fig. 5). To compensate for the loss of crop yield, it is
imperative to increase crop yield per unit area with more innovative
agricultural technology and sustainable land management policies.
Otherwise, we need to clear forests for more cropland, which will further
exacerbate the climate.

Three limitations exist in the current study. First, the magnitude of
LULCC-induced forcing is much smaller than that of GHGs and
aerosols62. This leads to limited impacts on a global scale (Fig. 2), limited
land fractions with significant changes, and model consistency (Sup-
plementary Figs. 2 and 9). Statistically significant changes are only

a
Po

pu
la

tio
n

<-200

-100

0

100

>200

(M
illi

on
pe

rs
on

m
on

th
s

de
ca

de
-1

)

India (10)

China (3)

Nigeria
(16)

Indonesia (17)

Brazil (4)
USA (2)

Thailand (30)

Philippines (58)

Russia (11)

Viet Nam (61)

101

102

103

104

b

Po
pu

la
tio

n 
pe

r c
ap

ita

<-3

-2

-1

0

1

2

>3

(M
on

th
s

pe
rs

on
-1

de
ca

de
-1

)

Paraguay (44)

Uruguay (34)

Gambia (99)

Nicaragua (91)

Nigeria
(16)

Mali (35)

Niger (36)

Thailand (30)

Cambodia (75)

Uganda (71)
-5

0

5

10

15

Global mean change: 1.6 [0.8 2.6]

c

C
ro

p

<-1.5

-1.0

-0.5

0

0.5

1.0

>1.5

(M
km

2
m

on
th

s
de

ca
de

-1
)

India (10)

Brazil (4)

Nigeria
(16)

Argentina (6)

China (3)

Australia (1)

Russia (11)
USA (2)

Ukraine (18)

Thailand (30)

-100

0

100

101

d

Fo
re

st

<-2.0

-1.0

0

1.0

>2.0

(M
km

2
m

on
th

s
de

ca
de

-1
)

Russia (11)

Brazil (4)
USA (2)

China (3)

Indonesia (17)

Congo (Kinshasa) (46)

Canada (12)

Colombia (21)

Papua New Guinea (118)

Thailand (30)
-101

-100
0

100

101

Fig. 5 | Changes in exposure to drought events due to historical LULCC.
a Changes in total population exposure in each country per decade (left), along with
the Top 10 countries ranked by changes in exposure. The dots are the MMM values,
and the error bars are the 95% confidence intervals (CIs). b–d Same as (a) but for
population per capita (b), crop (c), and forests (d). The numbers in the parentheses

after the country/region names in the bar plots denote the rank of this country/
region in the LULCC magnitude, with smaller numbers representing stronger
LULCC activity. Note the logarithmic scale on the y-axis in (a), (c), and (d). In (b),
the red horizontal dash-dotted line represents the global mean change, while the red
shades denote the 95% CI.

https://doi.org/10.1038/s43247-025-02392-0 Article

Communications Earth & Environment |           (2025) 6:398 7

www.nature.com/commsenv


observed in some regions, such as South America and tropical Africa. It
is acknowledged that such a low signal-to-noise ratio adds uncertainties
to our results. We stress that future LULCC studies should focus more
on regional scales where the LULCC signal is significant (e.g., regions
with strong LULCC activity). The second issue is associated with irri-
gation, a water management practice that can change the surface energy
budget (including ET), temperature, near-surface humidity, and
precipitation63,64. The joint changes in these variables may further
modify drought characteristics via changes in P and PET. Among the 11
models used in this study, only the CESM2 model has active irrigation.
Therefore, the remaining models that do not consider the irrigation
process may under- or overestimate the biophysical effect of LULCC on
droughts. Third, current models are still unable to perfectly represent
the biophysical effects of forest cover changes, which may bias the
simulated effects on ET65,66 and, subsequently, P and P− PET16. Despite
these limitations, our multi-model ensemble study still provides useful
information on how LULCC modifies the water cycle biophysically.
Future studies with irrigation and more realistic representations of
biophysical processes are needed to provide a more complete
assessment.

Materials and methods
CMIP6 model output
Elevenmodels (one realization permodel) participating in both theClimate
Model Inter-comparison Project Phase 6 (CMIP6)67 and Land Use Model

Inter-comparison Project (LUMIP)68 are employed in this study. For each
model, two experiments are used to quantify the impact of historical
LULCC. The first experiment is a standard historical simulation that
includes all anthropogenic forcings (e.g., greenhouse gases, aerosols, and
LULCC) and natural forcings (e.g., solar and volcanic forcings). The second
is the hist-noLu simulation, in which all forcings are identical to those in the
historical experiment but with land use fixed at the 1850 level. The LULCC
data in all CMIP6 models are prescribed by the Land-Use Harmonization
dataset69. It is worth noting that not all models can fully adopt this LULCC
data due to different classification schemes for land cover; thus, the LULCC
implemented in eachmodelhas different levels of complexity, dependingon
the model's needs and configurations. All simulations were run in fully
coupled mode from 1850 to 2014, and the period of 1950–2014, 65 years in
total, is chosen for analyses in this study. The detailed information of each
model is listed in Supplementary Table 1. Notably, the atmospheric con-
centrations of greenhouse gases in both experiments are identical and are
not influenced by historical LULCC. Differences between the two experi-
ments are solely attributed to the biophysical effects of historical LULCC.

Model performance evaluation
CMIP6 models have been widely used in the climate community70.
However, it is still necessary to evaluate the performance of the model
simulations for the main variables used in this study.We compared some
selected variables from the hist simulation against observational data.
The variables selected for comparison are those used for estimating
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P− PET (see below), such as temperature, humidity, and radiation. The
comparison was performed based on 30-year mean values over
1985–2014 from observational records and the CMIP6 output (Supple-
mentary Fig. 12). In general, the models can reproduce the observed
climatology reasonably well for most of the variables examined here. The
correlation coefficients (r) between the MMM values and observational
values are larger than 0.80 for all the selected variables and larger than
0.95 for temperature and surface radiation. The r between the MMM and
the observed P− PET is close to 0.90. Given this evaluation outcome, it is
suitable to utilize these models in our analyses.

Calculation of the standardized precipitation-evapotranspiration
index (SPEI)
In this study, we employed the SPEI to identify drought events and assess
drought characteristics. The SPEI has the advantages of flexible timescales
and the inclusion of the impact of background climate change on drought,
which has been widely used in drought analyses12,71–74. The SPEI is a stan-
dardized time seriesof surfacewater balance, definedasP− PET, inwhichP
is precipitation and PET is the potential evapotranspiration. The latter is the
evapotranspiration under the condition without water limitation, which is
estimated by the Food and Agricultural Organization Penman–Monteith
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method75:

PET ¼ 0:408Δ Rn � G
� �þ γ 900

Tþ273 u es � ea
� �

Δþ γ 1þ 0:34uð Þ ð1Þ

where PET is in mmday−1, Δ is the slope of the vapor pressure curve
(kPa °C−1), Rn is the surface net radiation (MJm−1 day−1), G is the soil heat
flux (MJm−1 day−1), γ is the psychometric constant (kPa °C−1), T is the 2m
air temperature (°C), u is the surface wind speed (m s−1), es is the near-
surface saturation vapor pressure (kPa), and ea is the actual vapor
pressure (kPa).

For each grid cell in each month, the 3-month cumulative P and PET
were first obtained by summing all values of that month and the preceding
twomonths. For example, the cumulativeP inMarch1960 is the summation
ofP from January 1960 toMarch 1960. Then, thewater deficit on amonthly
scale (D) is calculated as follows:

Dm ¼ Pm � PETm ð2Þ

where Dm is the 3-month cumulative water deficit in month m. Pm and
PETm are 3-month cumulative P and PET, respectively, in month m. The
monthly anomalies of D were then obtained by subtracting the monthly
climatology from each month at each grid. Previous analysis indicates that
the bestfittedprobabilitydistributionof hydrological variables varies grid by
grid76. Considering the differentmodel simulations fromdifferent scenarios
used in this study, a nonparametric approach76 is used in this study instead
offitting thedata into the log-logistic distribution38. This approachgenerates
comparable standardized indices from different simulations with different
background climates, and was applied by Chiang et al.12. The monthly D
anomalies of each grid in the hist-noLu simulation arefirst ranked following
Gringorten77:

p Dð Þ ¼ i� 0:44
nþ 0:12

ð3Þ

where p is the empirical probability of eachDvalue, i is the rank, andn is the
sample size, which is 778 in this case (65 × 12–2, there are noD values in the
first twomonths). 0.44 and0.12 are twoempirical coefficients.The empirical
probability p was then translated into the standardized index (SI) using the
standard normal distribution function:

SI ¼ ϕ�1 p
� � ð4Þ

where SI is the SPEI that will be used for analysis. For the hist simulations,
the monthly D anomalies were ranked against the hist-noLu simulation to
obtain the SPEI values. We used the 3-month SPEI in the current analysis
because the 3-month SPEI is capable of capturing seasonal drought events.
In addition, we also repeated our analysis with the 6-month SPEI
(Supplementary Figs. 13 and 14), and the results are essentially similar to
those of the 3-month SPEI.

Drought identification, PDF construction, and frequency change
For a given grid, a drought event was identified when the SPEI value was
smaller than –1 for at least 3 consecutivemonths. The duration is defined as
the number of months of each drought event. Severity is defined as the
cumulative sum of the SPEI absolute value during a drought event. The
intensity is defined as the mean severity of each month within a drought
event, which is estimated by dividing the severity by the duration. The
frequency at each grid is the total number of drought events within the 65-
year period. The drought events were identified at each grid in each model
for both simulations. Then the duration, frequency, severity, and intensity
were averaged across all events to obtain the mean value of each grid.

To compare the drought frequency for hist and hist-noLu simulations
in more detail, we showed the drought frequency grouped by duration,
severity and intensity, as shown in Supplementary Fig. 4. In the hist-noLu

simulation, we first estimated the total number of drought events by
aggregating all the drought events in all land grids in each model, in which
the drought events of each grid were weighted by grid area. The frequency
for each bin is then obtained by dividing the total number of drought events
within that bin by the total number of drought events across all the grids.
Notably, the frequency in the hist simulation was estimated against the total
number of drought events in hist-noLu for comparison. This process was
repeated for all the models, and the MMM values are shown.

The probability distribution functions (PDFs) of each drought feature
(SupplementaryFig. 3)were constructedwith the spatially aggregatedMMM
values to examine how historical LULCC has impacted the distribution of
each drought characteristic. The PDFs were estimated by fitting a kernel
density estimate to the land grids for both the hist and hist-noLu simulations
separately. A similar approach was applied to the bivariate distribution
constructed from the MMM values of duration and intensity (Fig. 3).

Impact of LULCC on drought
TheLULCC impact, denotedasΔor change,was quantified asdifferences in
the same variables between the two simulations in each model. Taking the
drought frequency as an example, the impact of LULCC on frequency is
defined as:

ΔFrequency ¼ Frequencyhist � Frequencyhist�noLu ð5Þ

InEquation [5],Δ is the change in drought frequencydue to the impact
of LULCC, and the overbars represent the mean value of 1950–2014. The
changes in other drought characteristics, such as duration and intensity, as
well as other meteorological variables (e.g., P and PET), were estimated
similarly by replacing the frequency in Equation [5] with the corresponding
variables.

These differences were computed for each grid cell in each model and
then averaged to obtain the multi-model mean (MMM) values, with an
equal weighting factor assigned to each model. All model outputs were
bilinearly resampled to a common spatial resolution of 0.94° × 1.25° in
latitude and longitude before data processing.

Significance test
A bootstrap technique was used to test whether the MMM values are sig-
nificantly different from zero at the grid-cell level. The 11model values were
sampled 11 times randomly with replacement to obtain a mean value. The
process was repeated 1000 times to construct a 95% confidence interval (CI)
(function bootci in MATLAB). The MMM changes are considered sig-
nificant if zero falls outside the confidence interval. An advantage of this
technique is that it does not require the results of the 11 models to be
normally distributed. This approach was also applied to the binned fre-
quency in Supplementary Fig. 4 to examine whether the frequency differ-
ences betweenhist andhist-noLu are statistically significant. To testwhether
the distributions of drought characteristics from hist-noLu and hist simu-
lations are significantly different (Fig. 3 and Supplementary Fig. 3), a two-
sample Kolmogorov–Smirnov test was used to determine the statistical
significance.

Exposure to drought
To evaluate the potential impact of drought on populations, croplands, and
forests due to LULCC activity, the exposure of populations, croplands, and
forests to drought events was estimated. Taking population exposure as an
example, the exposure (ExposurePop) at each grid was estimated as:

ExposurePop ¼
XN

1

Pop ð6Þ

In Equation [6], N is the total number of months in drought events
within the 65-year period, and Pop is the total population of this grid. To
eliminate the change in the population over the 65-year period, the popu-
lation in 2010 was used in the estimation of exposure. The exposure was
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estimated separately for the hist and hist-noLu simulations. The impact of
LULCC was then obtained by taking the differences between the two
simulations (histminus hist-noLu). The resultswere divided by 6,500,000 to
obtain exposure per decade (million person-months), as shown in Fig. 5.
The relative changes in exposure were estimated by scaling the total expo-
sure changes with the exposure in the hist-noLu simulations (Fig. 6). The
exposures of cropland and forest are estimated similarly by replacing the
population data with areas of cropland and forest in 2010 in each grid. The
gridded crop and forest data are from the Land-Use Harmonization 2
(LUH2)69. The gridded results were then aggregated to the country/region
level. The 95% CI was estimated with the same bootstrap technique as
described above.

Impact of reforestation on drought (SSP3-7.0 data analysis)
To evaluate the impact of LULCC under a warming climate, the shared
socioeconomic pathway (SSP3-7.0) simulation from the Scenario Model
Intercomparison Project54 and the SSP370-126Lu simulation from the
LUMIP project are used. The standard SSP3-7.0 scenario represents a
medium-to-high emission path with substantial deforestation and lim-
ited climate mitigation policies. Under this scenario, the radiative forcing
is approximately 7.0Wm−2 at the top of the atmosphere by the end of the
21st century relative to 1850, and the global mean temperature is about
2.8 K warmer than the current level. The simulation covers the period of
2015–2100, with all anthropogenic forcings and LULCC. The SSP370-
126Lu simulation is identical to the SSP3-7.0, but LULCC is adapted
from the SSP1-2.6 scenario. SSP1-2.6 represents the low-emission
developing pathway with strong climate mitigation policies and aims
to constrain the global mean temperature change below 2 K by 2100
relative to 1850. In this scenario, forests are substantially recovered at the
expense of fraction loss in agricultural land (crop, pasture, and range-
land). Consequently, the SSP370-126Lu simulation represents the
reforestation version of SSP3-7.0. The land use data is also prescribed by
the Land-Use Harmonization dataset69. Again, the concentrations of
greenhouse gases in both simulations are the same, and the LULCC
impact identified here is also a pure biophysical effect.

By the timeof this study, sevenmodels that archivedboth SSP3-7.0 and
SSP370-126Lu simulations are used for the analysis of future response. The
availability ofmodels is listed in Supplementary Table 2. One realization per
model is employed. The output of 2036–2100 (65-year period) is used for
data analyses to keep consistency with the historical analyses. The SPEI
values are calculated similarly to those of historical analyses, and the
monthly D anomalies of both SSP3-7.0 and SSP370-126Lu were ranked
against the hist-noLu simulation to obtain comparable SPEI values as in
Equation [3]. Then, the impact of reforestation (e.g., Fig. 7) is estimated as
follows:

ΔFrequencyreforestation ¼ FrequencySSP370�126Lu � FrequencySSP3�7:0 ð7Þ

The impact of reforestation on other drought characteristics is esti-
mated similarly by replacing frequency in Equation [7] with duration,
severity, and intensity.

Data availability
All data in this study are freely available from the Web. The CMIP6 data,
both historical and SSP scenario, is collected from the Earth System Grid
Federation (ESGF) portal at https://esgf-node.llnl.gov/projects/cmip6/.
LULCC data (LUH2)69 is downloaded from https://luh.umd.edu/. The UN
WPP-Adjusted Population Count data (V4.11)42 is collected from https://
sedac.ciesin.columbia.edu/data/collection/gpw-v4/sets/browse. The Berke-
ley temperature data78 is available at: http://berkeleyearth.org/data/. The
CRU TS data (v4.04)79 is collected from https://crudata.uea.ac.uk/cru/data/
hrg/cru_ts_4.04/. The ERA-5 reanalysis products80 are downloaded from
https://climate.copernicus.eu/climate-reanalysis. The data for generating
the figures in the main text are available at https://zenodo.org/records/
15421825.

Code availability
The MATLAB scripts used in this study are available upon reasonable
requests from the corresponding author.
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