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Abstract: The study comprehensively evaluates low-cost CO2 sensors from different price tiers,
assessing their performance against a reference-grade instrument and exploring the possibility of
calibration using different machine learning techniques. Three sensors (Sunrise AB by Senseair, K30
CO2 by Senseair, and GMP 343 by Vaisala) were tested alongside a reference instrument (Los Gatos
precision greenhouse gas analyzer). The results revealed differences in sensor performance, with
the higher cost Vaisala sensors exhibiting superior accuracy. Despite its lower price, the Sunrise
sensors still demonstrated reasonable accuracy. Meanwhile, the K30 sensor measurements displayed
higher variability and noise. Machine learning models, including linear regression, gradient boosting
regression, and random forest regression, were employed for sensor calibration. In general, linear
regression models performed best for extrapolating data, whereas decision tree-based models were
generally more useful in handling non-linear datasets. Notably, a stack ensemble model combining
these techniques outperformed the individual models and significantly improved sensor accuracy by
approximately 65%. Overall, this study contributes to filling the gap in intercomparing CO2 sensors
across different price categories and underscores the potential of machine learning for enhancing
sensor accuracy, particularly in low-cost sensor applications.

Keywords: low-cost CO2 sensors; collocated measurements; performance evaluation; machine
learning calibration

1. Introduction

Carbon dioxide (CO2) is one of the major greenhouse gases (GHG) responsible for
contemporary climate change. Studies have shown that tropospheric CO2 levels often
exhibit significant spatial variation, which depends on land usage [1,2] and topography [3].
CO2 measurements can be used as a proxy to estimate carbon emissions. Monitoring these
fine-scale spatial variations of CO2 can help to identify emission hotspots, assess local
carbon cycling, track urbanization effects, and develop strategies to reduce overall carbon
emissions [1,3,4].

Historically, wide spatial coverage and resolution of CO2 measurements has been lim-
ited by the high cost of instrumentation. Low-cost CO2 sensors have become increasingly
popular over recent years owing to technological advancements in electronics and the In-
ternet of Things (IoT). These sensors are generally small, portable, and low power. Usually,
these sensors either use a solid electrolyte or a non-dispersive infrared (NDIR) detector [5].
NDIR sensors are more stable, accurate, and consume less power compared to sensors
using solid electrolytes [6,7]. Furthermore, ease of operation and IoT capabilities make
them ideal for setting up a dense network of multiple sensors to measure the distribution
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of CO2 concentrations at high spatial resolution. A dense network of reasonably accurate
low-cost CO2 sensors can provide vital information leading to a better understanding of
carbon fluxes and their sources [8]. However, obtaining accurate data from these low-cost
sensors is a major challenge. Many sensors suffer from inadequate quality control and
stability, leading to inconsistent performance across various conditions [9]. Over time,
sensor measurements tend to drift, compromising accuracy [10]. Moreover, conducting
in situ recalibration, especially within extensive sensor networks, is often impractical.
Additionally, environmental variables like temperature and humidity induce non-linear
responses, further complicating sensor usability [11]. Despite their cost-effectiveness, it is
imperative to address these shortcomings to ensure dependable environmental monitoring.

The United States Environmental Protection Agency (EPA) over the last few years has
focused on development and performance targets for particulate matter, ozone, nitrogen
dioxide, sulfur dioxide, and carbon monoxide sensors [12]. It published detailed guidelines
on testing protocols and target values for particulate matter and ozone sensors and is
currently participating in the American Society for Testing and Materials (ASTM) study
(ASTM WK74360) to develop methods for testing and evaluating CO2 sensors [12]. Studies
that evaluate the performance of low-cost sensors help in setting the performance targets
for the sensors. Past studies have evaluated low-cost CO2 sensors in controlled [8] and
uncontrolled environments [5,7,8]. These studies have also evaluated the dependence
of sensors on several factors, such as temperature, relative humidity (RH), and pressure.
Further, low-cost sensors vary significantly in cost, ranging from ~35 USD to ~3500 USD.
Past studies have evaluated low-cost CO2 sensors ranging from ~50–100 USD [13–17] to
~3500 USD [18]. However, the intercomparison of differences in the performance and
accuracy of low-cost sensors from different price categories has not been well studied in
the past, which is necessary to better understand the applicability of low-cost CO2 sensors.
This will also contribute to US EPA and ASTM efforts in setting performance targets for
CO2 sensors. Further, to make low-cost sensors an effective tool for research, it is required
to calibrate the sensors and ensure the data reported are accurate. Several past studies
have attempted to use statistical [8] and machine learning techniques [7,8,11,19] to improve
the performance of sensors. However, these studies do not compare the performance
differences of sensors from different price categories [20]. Our study aims to bridge this
gap. This comparison will help in selecting a sensor that balances accuracy and budget,
depending on the specific application.

We evaluated three different low-cost sensors, testing three replicates of each. The
low-cost sensors investigated in this study are as follows: (a) Sunrise AB by Senseair
(hereafter referred to as Sunrise), (b) K30 CO2 by Senseair (K30), and (c) GMP 343 by Vaisala
(Vaisala). The sensors’ performance evaluation is based on collocated measurements next
to a reference-grade instrument, a Los Gatos Research analyzer by ABB (model GLA 131;
hereafter referred to as LGR). The results from the study highlight the differences in the
performance of low-cost sensors from two different price categories: (a) Tier I, Vaisala
(~3500 USD) and (b) Tier II, Sunrise and K30 (~60 to 100 USD). One objective of this
study is to calibrate and improve the accuracy of low-cost sensors using machine learning.
Additionally, the study aims to evaluate the effectiveness of calibrating these sensors in
environmentally controlled chambers. To test this method, we operated three Sunrise
sensors alongside LGR in control chambers under varying conditions. The data collected
were used to calibrate the sensors with machine learning techniques and test the models’
performance using ambient air measurements. While previous studies have evaluated
sensor performance in controlled chambers [11,21] and indoor environments [22], to the
best of our knowledge, there are no studies that assess the performance of calibration
models developed in chamber settings when applied to ambient environmental data. This
evaluation is crucial for understanding the applicability of chamber-based calibration of
low-cost sensors.
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2. Methodology
2.1. Measurement Site

All of the measurements were made on the campus of Yale University in New Haven,
CT, USA. For the control chamber tests, the collocated measurements were conducted in
a temperature-, humidity-, and CO2-controlled chamber (model: EGC C6 Environmental
Control System). The outdoor ambient air tests were performed on the rooftop of the
Environmental Science Center Building (41.316 N, −72.921 W) at the university campus.
The site represents the ambient CO2 concentrations at the center of the Yale University
campus.

2.2. Sensors

A total of nine NDIR CO2 sensors were tested and evaluated.

1. Sunrise AB [23] is a miniature (33.5 mm × 19.7 mm × 11.5 mm, weight: 5 g; price
~60 USD) CO2 sensor that operates on ultra-low power (150 µA, 3.05–5.5 V). It has a
measurement range of 400–5000 ppm and stated an accuracy of ±30 ppm or ±3% of
the reading. The operation ranges for temperature and RH are 0–50 ◦C and 0–80%,
respectively. The sensor costs ~55 USD and allows UART (Universal Asynchronous
Receiver/Transmitter) and I2C (Inter-Integrated Circuit) as communication interface
options.

2. K30 [24] is a small (51 mm × 58 mm × 12 mm; price ~100 USD) CO2 sensor that
has a detection range of 0 to 5000 ppm. The accuracy provided by the manufacturer
is the same as that of the Sunrise sensor. The sensor supports UART and I2C. The
temperature and RH operation ranges as per the manufacturer are 0–50 ◦C and 0–95%,
respectively. The sensor requires a 4.5 to 14.0 V DC supply, and the average current
consumption is rated at 40 mA.

3. Vaisala [25] is a compact (194 mm × 55 mm × 55 mm, weight: 360 g; price ~3500 USD)
CO2 sensor designed for outdoor use. It has an overall detection range of 0–5000 ppm.
The stated accuracy is (±3 ppm + 1% of the reading) for 0–1000 ppm detection range,
which makes it ~10 times more accurate than the K30 and Sunrise sensors. Vaisala
also offers an IP66 rating, has a temperature operating range of −40 to +60 ◦C, and
communication is over UART. The sensor requires an 11 to 36 V DC supply, and the
power consumption varies between 1 W to 3.5 W based on the state of the optics.

A Bosch BME280 Atmospheric Sensor was deployed alongside each sensor to obtain
temperature, pressure, and RH values. It has a temperature range from −40 to +85 ◦C and
an RH range from 0 to 100%. The sensor requires a 3.3 V power supply and has a current
rating of 1 mA.

2.3. Reference Instrument

The reference instrument used for this study is LGR-ICOS (Los Gatos Research ana-
lyzer, using patented Off-Axis Integrated Cavity Output Spectroscopy technology); model
GLA131, manufactured by ABB [26]. It weighs around 6.1 kg and comes in a portable case
(12 cm × 34 cm × 29.5 cm). The instrument requires 10–30 VDC or 110/240 VAC supply
and the maximum power consumption reported is 35 W. Its operating temperature range is
5–45 ◦C and it offers a data measurement range of 0.01–10 Hz. The LGR analyzer is widely
regarded as a reference standard for greenhouse gas measurements offering high sensitivity
and quick response time [27,28].

2.4. Sensors Assembly

The sensors were connected to a Sparkfun ESP8266 Thing (ESP) microcontroller to
acquire the data and upload it to a server via Wi-Fi. Figure 1 provides diagrams of the
sensor assemblies and communications. The communication protocol between all the
Sunrise, K30, and BME280 atmospheric sensors and ESP8266 is I2C, whereas the Vaisala to
ESP communication protocol is SPI. The IoT network that we used for this study highlights
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the capability of low-cost sensors to manage and analyze the data remotely without needing
physical access. This makes low-cost sensors suitable for application in dense networks to
obtain high spatial resolution distribution of CO2. The Sunrise, K30, and BME280 sensors
used I2C to communicate with ESP whereas the Vaisala used Serial UART. This approach
has the advantage of managing and analyzing data remotely, which is important for dense
networks aiming to obtain measurements with high spatial resolution.
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Figure 1. Schematic representation of the sensor assembly.

2.5. Experimental Setup

All of the sensors were operated directly to the LGR reference instrument. LGR was
set to measure the CO2 concentrations at 1 s interval. The Sunrise sensors logged data
every 16 s, whereas the K30 and the Vaisala sensors logged data at 30 s intervals.

For ambient environment testing, three replicates of each of the CO2 sensors measured
the CO2 concentrations directly adjacent to the reference instrument LGR in the ambient
environment. The measurements were made on a building rooftop at Yale University
campus, as represented in Figure 2a. The measurements were made from August 8 to
October 14, 2023. The CO2 levels varied within a range of 387 ppm to 593 ppm, with a
mean concentration of 431 ppm. The mean temperature during the measurement duration
was 22 ◦C (range: 9 ◦C to 38 ◦C) and the mean RH was 72% (range: 25% to 100%). The sky
conditions were partly sunny for most of the days and were overcast for a few days.

During the controlled environment testing, three Sunrise sensors along with the
reference instrument were operated adjacent to each other inside a closed environmental
growth chamber (Figure 2b). The growth chamber was programmed on a 24 h cycle to set
the variations in temperature from 14 ◦C to 32 ◦C. The RH in the chambers was monitored
but not controlled. The growth chamber measurements were performed in two different
settings of CO2: (i) ambient CO2 variations (range from 418 ppm to 850 ppm; mean
507 ppm), and (ii) controlled CO2 variations by injecting CO2 from a CO2 gas cylinder tank
(range from 458 ppm to 871 ppm; mean 631 ppm). Figures S1 and S2 show the photos of
the experimental setups at the ESC building rooftop and environmental control chambers,
respectively.
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(b) growth chamber test.

2.6. Data Processing and Performance Evaluation

All measurements were converted into minute-wise averages to intercompare the
sensor performance and calibrate using machine learning algorithms. LGR accurately
measures the concentration of water vapor in the air sampled and utilizes this data to
adjust the absolute (wet) CO2 measurements to reflect the molar mixing ratio of CO2 to
dry air. The low-cost sensors measure the wet CO2 concentration (CO2_wet). The wet CO2
concentration was converted to dry CO2 molar mixing ratios using RH and temperature
obtained from the BME280 atmospheric sensor [29]. The dry CO2 molar ratio (CO2_dry)
was obtained using Equation (1), as follows:

CO2wet

Vdry
· 1013

P
(1)

where P is atmospheric pressure in hPa, and Vdry represents the volume of 1 m3 dry air at
1013 hPa with no water content and it was calculated using Equation (2), as follows:

Vdry =
P −

(
Pws · RH

100

)
P

(2)

where Pws represents saturation water vapor pressure in hPa. These corrections were
applied to all of the sensor measurements before the evaluation of their performance and
calibration. The corrected sensor measurements are hereafter referred to as CO2_dry.

The performance of the sensors was based on the parameters recommended by the US
EPA for the evaluation of low-cost particulate matter and ozone sensors [30]. It recommends
using slope, intercept, R2, bias, and RMSE (Root Mean Squared Error) values of a linear
regression plot with a reference instrument as an independent variable and the low-cost
sensor as a dependent variable.

2.7. Sensor Calibration Using Machine Learning

For the ambient environment tests, 85% of the collected data were used to train the
machine learning algorithms, and the 15% of the data were used to test the model. The test
data, separate from the training dataset, was used to evaluate the model’s performance.
RMSE values obtained from the scatter plot between the predicted and actual values were
considered the main parameter to rank the model’s performance.
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Similarly, the machine learning algorithms were trained using the data from the
two different types of chamber studies for the Sunrise sensors. In this case, the ambient
environment measurement data from the Sunrise sensors were the test dataset.

For both tests, CO2_dry, RH, temperature, and pressure were used as predicting vari-
ables (input features), and the reference concentration CO2_reference measured by LGR as the
target variable. Equation (3) represents the regression model used for this study, as follows:

Y = f (X) + ε (3)

where Y is the target value i.e., CO2_reference; and f(X) represents a function that relates
input features X to the predicted output of Y. Here, X is a vector of input features (CO2_dry,
RH, temperature, and pressure), and ε is the error term representing the difference between
predicted output and true output.

A total of 10 different machine learning algorithms were tested, of which the 5 best
performing models were selected for analysis in this study. A brief description of the
5 selected machine learning models is as follows:

1. Multiple linear regression: This is a classic statistical technique used to model the
relationship between a dependent variable and multiple independent variables. Hav-
ing very low computation requirements, this simple model assumes that there exists
a linear relationship between the variables [31]. The model estimates coefficients to
minimize the difference between predicted and actual values.

2. Decision tree regression: This is a machine learning technique that involves splitting
the whole dataset based on variables and features such that it forms tree-like structures.
The predictions are made continuously by assigning a mean or weighted mean value
to the leaf nodes of each tree. The model allows for intuitive interpretation. However,
it may lead to overfitting if not clipped properly [32].

3. Gradient boosting regression: This is an ensemble machine learning method that
builds a predictive model by combining the predictions of multiple weak learners
(typically decision trees) [33]. The model reduces errors by sequentially fitting new
trees to the residuals of previous trees. The final prediction is a weighted sum of
individual tree predictions and not a mere average of different decision trees, resulting
in a robust and accurate regression model.

4. Random forest regression: This is another ensemble machine learning technique that
aggregates tree predictors that are random and independent from each other [34]. The
final prediction is an average or weighted combination of individual tree predictions.

5. Stacked ensemble model: A stacked ensemble is a machine learning technique that
combines predictions from multiple base models by training a meta-model on their
outputs [35]. As the name suggests, the base models can be stacked one over the
other and the overall model can have different levels. For this study, we used linear
regression, gradient boosting regression, and random forest regression as the base or
level 0 models, followed by a linear regression model as the final model, i.e., level 1
model.

3. Results and Discussion
3.1. Sensor Intercomparison

Figure 3 shows a boxplot comparing the ambient measurement data from all sensors
and the reference instrument, both before and after applying the wet correction. The suffix
numbers 1, 2, and 3 after the sensor names denote the three replicates. Table S1 shows the
mean values of CO2_wet and CO2_dry. The mean values of the CO2_wet concentrations for
the three replicates of the Sunrise, K30, and Vaisala sensors were 437.8 ppm, 478.2 ppm, and
421.9 ppm, respectively. The mean values of the CO2_dry concentrations after applying the
correction for all three Sunrise, K30, and Vaisala sensors were 442.0 ppm, 480.8 ppm and
425.6 ppm, respectively. The mean value of the dry CO2 concentrations from the reference
instrument, i.e., LGR, was 431.8 ppm.
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Figure 4 shows a time-series plot for all of the sensors with the reference instrument.
Figures 3 and 4 show that the K30 1 and K30 2 sensors overpredicted the CO2 concentrations,
whereas K30 3 and all of the Sunrise and Vaisala sensors measured the CO2 values close to
the LGR measurements. The K30 sensor measurements exhibited more noise, with a mean
variance of 1283 ppm2 when compared to 898 ppm2 by Sunrise and 839 ppm2 by Vaisala.
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The ambient results from the evaluation based on the linear regression plot of all of
the sensors’ CO2_dry values with reference to LGR are shown in Table 1. In terms of R2

values, the Vaisala sensors performed the best, with a combined (three replicates) mean
R2 value of 0.92, followed by the Sunrise and K30 sensors, with mean values of 0.86 and
0.75, respectively. Based on the cost and manufacturer-claimed accuracy, these results were
expected. However, considering that Vaisala costs ~60 times more than the Sunrise sensors,
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the performance of the Sunrise sensors was reasonable. The combined means of the slope
values for the Vaisala, Sunrise, and K30 sensors were 0.92, 0.80, and 0.70, respectively.

Table 1. Evaluation of CO2_dry values based on linear regression against the LGR reference instrument.

Sensors Intercept Slope R Square RMSE (ppm) Bias (%)

Sunrise 1 62.69 ± 0.98 0.82 ± 0.0 0.86 21.49 4.01

Sunrise 2 69.26 ± 0.93 0.84 ± 0.0 0.86 12.07 ±2.22

Sunrise 3 84.06 ± 1.0 0.76 ± 0.0 0.85 29.27 5.62

K30 1 77.0 ± 1.52 0.64 ± 0.0 0.71 131.47 22

K30 2 85.88 ± 1.18 0.83 ± 0.0 0.79 19.25 4.1

K30 3 143.11 ± 1.13 0.65 ± 0.0 0.74 25.3 −4.4

Vaisala 1 90.58 ± 0.81 0.83 ± 0.0 0.88 23.43 −5.14

Vaisala 2 16.31 ± 0.89 0.97 ± 0.0 0.9 9.99 ±1.55

Vaisala 3 20.1 ± 0.47 0.95 ± 0.0 0.98 5.66 ±1.04

If we observe the RMSE values, the Vaisala sensors had the lowest values (mean:
13 ppm), followed by the Sunrise (mean: 21 ppm) and K30 sensors (mean: 59 ppm). The
values for the Vaisala and Sunrise sensors were close to the manufacturer-claimed accuracy
of (±3 ppm +1%) and ±30 ppm of the reading, respectively. However, the RMSE values
obtained for the K30 sensors were ~2 times the ±30 ppm accuracy reported by the manu-
facturer. The mean absolute bias values were 2.6%, 4%, and 10% for the Vaisala, Sunrise,
and K30 sensors, respectively. The bias values were calculated using the DASC (Data
Assessment Statistical Calculator) tool offered by the US EPA for collocated measurements
of low-cost sensors and reference instruments.

3.2. Machine Learning Algorithms for Correction

Figure 5 shows the performance of the five machine learning models for each replicate
of the Vaisala, Sunrise and K30 sensors. The RMSE values improved significantly after
applying the corrections.

The stack ensemble model was the best-performing model overall (mean RMSE
9.53 ppm), followed by linear regression (mean RMSE 10.53 ppm), gradient boosting
regression (mean RMSE 11.09 ppm), random forest regression (mean RMSE 13.79 ppm),
and decision tree regression (mean RMSE 15.87 ppm). The overall mean RMSE before
calibration for the nine sensors was 27.57 ppm, which significantly improved by ~65% after
applying the corrections using the stack ensemble machine learning model. The findings
from previous studies indicated a substantial improvement in the accuracy of low-cost
CO2 sensors, with error reductions of 90–98% [19] and an accuracy rate of 98.9% [11]. The
significant error reduction observed in these studies can be attributed to the data splitting
techniques employed. Our study used a data splitting method in which the testing data
were entirely unseen by the model, leading to a more realistic assessment of the sensor’s
performance. By contrast, prior studies often used random data-splitting methods, which
can inflate performance metrics due to potential data leakage between training and testing
sets [36].
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Figure 5. RMSE values for all three sensors and their replicates in comparison to LGR measurements
before corrections and after applying corrections using different machine learning models for the
testing data.

For the Vaisala sensors, the mean RMSE value for the uncalibrated CO2_dry measure-
ment was 10.73 ppm, which improved to 4.3 ppm post-correction from the stack ensemble
machine learning model. Similarly, for the Sunrise and K30 sensors, the mean RMSE values
improved from 13.70 ppm to 8.5 ppm and from 58.27 ppm to 15.77 ppm, respectively. These
results indicated that the machine learning techniques significantly improved the sensors’
overall accuracy.

Figure 6 shows the scatterplot between LGR and measurements from all of the sensors
before and after applying the corrections using the trained stack ensemble machine learning
model for the testing dataset. In addition to the RMSE values, the machine learning model
corrections resulted in improvements of the mean R2 values for the Vaisala, Sunrise, and K30
sensors by 8.5%, 19.2%, and 34.6%, respectively. The measurements from the K30 1 sensor
notably deviated from those of the reference instrument and other sensors; its uncalibrated
readings had an RMSE value of 127 ppm. However, calibration led to a substantial decrease
of approximately 87% in the RMSE value. Furthermore, the uncalibrated data exhibited
two distinct clusters, which were successfully eliminated through calibration (bottom left
panel, Figure 6).

Linear regression models are usually better at extrapolation than decision tree-based
models such as random forest regression and gradient boosting regression [37]. Random
forest and gradient boosting regression models are usually better at handling non-linear
datasets. Stack ensemble models enhance predictive performance by leveraging diverse
model strengths and mitigating individual weaknesses, resulting in a more robust and
accurate overall prediction [35]. Instead of applying individual machine learning models,
we recommend using ensemble machine learning models to improve the overall calibration
and achieve better performance than that achieved using individual models.
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3.3. Environmental Chamber Measurements as Training Data

The main objective of growth chamber measurements is to evaluate the possibility of
applying corrections based on controlled indoor lab measurements and test the performance
of the machine learning models on outdoor ambient environment datasets. In-situ/outdoor
collocated measurements for calibrations are not always feasible, especially if there are
many sensors and the weather conditions are not favorable. For example, if a research
project requires the sensors to be deployed in summer, the growth chamber can be set up
to simulate summer conditions in the winter prior to summer deployment. Figure 7 shows
results for the RMSE values after applying the corrections using growth chamber collocated
measurement data to train different machine learning models for the three replicates of
Sunrise sensors. For both datasets, i.e., (a) ambient CO2 variations in the growth chamber
and (b) controlled CO2 variations in the growth chamber, linear regression performed the
best with mean RMSE values of 21.6 ppm and 15.6 ppm, respectively. However, the mean
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RMSE value for the uncalibrated CO2_dry measurements was 13.49 for the testing dataset
(ambient environments measurements at the rooftop). This means that the corrections
using the machine learning models trained on the growth chamber measurements generally
made the performance of the sensors worse. Only one Sunrise sensor (Sunrise #2) showed
improved performance: its RMSE value decreased from 12 ppm before calibration to
6 ppm after calibration (Figure 7b). We speculate that the main reason is the differences in
the overall distribution of the training dataset and testing data. Figure S3 highlights the
differences in the distribution of the datasets used to train and test the machine learning
models. We attempted to truncate the data from the chamber CO2 measurements to
align with the ambient environment measurements at the rooftop, intending to utilize
it for training purposes. Despite this, the performance of the machine learning models
did not show improvement, suggesting that environmental conditions, such as humidity,
temperature, and air pressure, also matter.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 14 
 

 

the testing dataset (ambient environments measurements at the rooftop). This means that 

the corrections using the machine learning models trained on the growth chamber meas-

urements generally made the performance of the sensors worse. Only one Sunrise sensor 

(Sunrise #2) showed improved performance: its RMSE value decreased from 12 ppm be-

fore calibration to 6 ppm after calibration (Figure 7b). We speculate that the main reason 

is the differences in the overall distribution of the training dataset and testing data. Figure 

S3 highlights the differences in the distribution of the datasets used to train and test the 

machine learning models. We attempted to truncate the data from the chamber CO2 meas-

urements to align with the ambient environment measurements at the rooftop, intending 

to utilize it for training purposes. Despite this, the performance of the machine learning 

models did not show improvement, suggesting that environmental conditions, such as 

humidity, temperature, and air pressure, also matter. 

 

Figure 7. RMSE values for Sunrise sensors after calibration using different machine learning models 

for testing data using the training dataset: (a) ambient CO2 variations in growth chamber; (b) con-

trolled CO2 variations in growth chamber. 

3.4. Limitations and Future Recommendations 

Outdoor measurements were conducted from 8 August to 14 October 2023 due to the 

operating range of the reference instrument, LGR, which is 5 to 45 °C. Temperatures in 

New Haven, the study location, fall below 5 °C after October, making it impractical to 

continue measurements beyond this period. Additionally, the low-cost sensors used in 

this study, Sunrise AB and K30, have an operating range of 0 to 50 °C, further constraining 

the study duration. We recognize that collecting data throughout the year would likely 

reveal seasonal variations in the performance of low-cost sensors, and we acknowledge 

this limitation. We recommend future studies to test and evaluate the performance of low-

cost sensors for longer duration. 

Due to logistical constraints, we were unable to operate other sensors during the 

chamber tests, resulting in data obtained exclusively from the Sunrise sensors. This limi-

tation could be addressed in future studies by incorporating additional sensors during 

testing. 

Furthermore, time constraints and feasibility issues prevented us from testing the 

stacked ensemble model’s performance across other low-cost CO2 sensors. We have iden-

tified this as an area for future work and recommend exploring additional low-cost CO2 

sensors, such as MH-Z19B, Telaire T6703, and SCD30. 

4. Conclusions 

The paper presents a detailed performance evaluation of low-cost CO2 sensors from 

different tiers of price categories (Sunrise about 50 USD; K30 about 100 USD; Vaisala about 

Figure 7. RMSE values for Sunrise sensors after calibration using different machine learning models
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3.4. Limitations and Future Recommendations

Outdoor measurements were conducted from 8 August to 14 October 2023 due to
the operating range of the reference instrument, LGR, which is 5 to 45 ◦C. Temperatures
in New Haven, the study location, fall below 5 ◦C after October, making it impractical to
continue measurements beyond this period. Additionally, the low-cost sensors used in this
study, Sunrise AB and K30, have an operating range of 0 to 50 ◦C, further constraining
the study duration. We recognize that collecting data throughout the year would likely
reveal seasonal variations in the performance of low-cost sensors, and we acknowledge this
limitation. We recommend future studies to test and evaluate the performance of low-cost
sensors for longer duration.

Due to logistical constraints, we were unable to operate other sensors during the cham-
ber tests, resulting in data obtained exclusively from the Sunrise sensors. This limitation
could be addressed in future studies by incorporating additional sensors during testing.

Furthermore, time constraints and feasibility issues prevented us from testing the
stacked ensemble model’s performance across other low-cost CO2 sensors. We have
identified this as an area for future work and recommend exploring additional low-cost
CO2 sensors, such as MH-Z19B, Telaire T6703, and SCD30.

4. Conclusions

The paper presents a detailed performance evaluation of low-cost CO2 sensors from
different tiers of price categories (Sunrise about 50 USD; K30 about 100 USD; Vaisala about
3500 USD). The results show that the Sunrise sensors, despite their price, are fairly accurate
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when compared to the reference instrument LGR. The measurements from the Sunrise
sensors differ from the reference instrument within the manufacturer’s claimed accuracy.
Vaisala sensors offer better accuracy, but this improvement comes at a much higher cost,
which may prohibit some applications. K30 sensor-reported concentrations exhibited an
overall offset and the noise in their measurements was higher in comparison to the Sunrise
and K30 sensors.

We further developed calibration procedures for the low-cost CO2 sensors using
different machine learning techniques, with a stack ensemble machine learning model
used to incorporate the benefits of linear regression, decision tree-based, and gradient
boosting techniques. The stack ensemble model outperformed the individual models,
leading to an overall reduction of 65% in the RMSE values; we recommend using this
technique to calibrate low-cost CO2 sensors in future applications. Controlled growth
chamber measurements were used to train the machine learning models and test the
models’ performance for the outdoor ambient environment measurements. The models
trained using the growth chamber data did not improve the sensor performance, which can
be attributed to the difference in the distributions of environmental conditions within the
training and testing data we used in this study. However, further study is needed to test
the possibility of using controlled indoor measurements to calibrate low-cost CO2 sensors
by imitating outdoor ambient environmental conditions.

Overall, we add to the growing body of literature on the feasibility and efficacy of
low-cost CO2 sensors for high-density spatial resolution monitoring, particularly when
cost limitations are of concern. We evaluated the performance of ultra-low-cost sensors
relative to a mid-range option and a standard high-precision analyzer. The results of our
study demonstrate that a range of hardware options, coupled with appropriate machine
learning correction techniques, promise to enable widespread, low-cost, and high spatial
resolution sensing of CO2 for policy-relevant monitoring applications in environmental
and human health.
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mdpi.com/article/10.3390/s24175675/s1, Figure S1: Experimental setup at the ESC building rooftop;
Figure S2: Experimental setup at the growth chambers with the Sunrise sensors and reference
instrument; Figure S3: Violin plot showing the growth chamber training and ambient environment
testing data; Table S1: Mean values of CO2_wet and CO2_dry concentrations.

Author Contributions: Conceptualization, X.L. and R.D.; methodology, X.L. and R.D.; software, R.D.,
A.T. and J.N.; formal analysis, R.D.; investigation, R.D. and J.G.; resources, X.L., P.A.R., C.C., A.T. and
J.N.; data curation, R.D., J.G., A.T. and J.N.; writing—original draft preparation, R.D.; writing—review
and editing, X.L., P.A.R., A.T., J.G., J.N. and C.C.; visualization, R.D.; supervision, X.L.; project
administration, X.L.; funding acquisition, X.L. All authors have read and agreed to the published
version of the manuscript.

Funding: CC was funded by the National Natural Science Foundation of China (Grant- 42021004 and
42005143),XL by Robert Wood Johnson Foundation (Grant 77476), XL, PR and JN by Yale Planetary
Solutions and the Three Cairns Climate Impact Innovation Fund.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: The data are available upon request to the authors.

Acknowledgments: We also acknowledge Christopher Bolick, Associate Director of Research, Yale
University Marsh Botanical Gardens, Yale University, for his assistance in setting up the Environ-
mental Growth Chambers. This research made use of the Advanced Prototyping Centre at Yale
University.

Conflicts of Interest: The authors declare no conflicts of interest.

https://www.mdpi.com/article/10.3390/s24175675/s1
https://www.mdpi.com/article/10.3390/s24175675/s1


Sensors 2024, 24, 5675 13 of 14

References
1. Zhang, Y.; Lyu, M.; Yang, P.; Lai, D.Y.; Tong, C.; Zhao, G.; Li, L.; Zhang, Y.; Yang, H. Spatial variations in CO2 fluxes in a

subtropical coastal reservoir of Southeast China were related to urbanization and land-use types. J. Environ. Sci. (China) 2021, 109,
206–218. [CrossRef]

2. Lapierre, J.-F.; Seekell, D.A.; Filstrup, C.T.; Collins, S.M.; Fergus, C.E.; Soranno, P.A.; Cheruvelil, K.S. Continental-scale variation
in controls of summer CO2 in United States lakes. J. Geophys. Res. Biogeosci. 2017, 122, 875–885. [CrossRef]

3. Li, Y.; Zheng, J.; Dong, S.; Wen, X.; Jin, X.; Zhang, L.; Peng, X. Temporal variations of local traffic CO2 emissions and its relationship
with CO2 flux in Beijing, China. Transp. Res. Part D Transp. Environ. 2019, 67, 1–15. [CrossRef]

4. Feng, T.; Zhou, B. Impact of urban spatial structure elements on carbon emissions efficiency in growing megacities: The case of
Chengdu. Sci. Rep. 2023, 13, 9939. [CrossRef] [PubMed]

5. Pandey, S.K.; Kim, K.-H. The Relative Performance of NDIR-based Sensors in the Near Real-time Analysis of CO2 in Air. Sensors
2007, 7, 1683–1696. [CrossRef] [PubMed]

6. Yi, S.; Park, Y.; Han, S.; Min, N.; Kim, E.; Ahn, T. Novel NDIR CO2 sensor for indoor air quality monitoring. In Proceedings
of the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers.
TRANSDUCERS ’05, Seoul, Republic of Korea, 5–9 June 2005; pp. 1211–1214. [CrossRef]

7. Zimmerman, N.; Presto, A.A.; Kumar, S.P.N.; Gu, J.; Hauryliuk, A.; Robinson, E.S.; Robinson, A.L.; Subramanian, R. A machine
learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring. Atmos.
Meas. Tech. 2018, 11, 291–313. [CrossRef]

8. Müller, M.; Graf, P.; Meyer, J.; Pentina, A.; Brunner, D.; Perez-Cruz, F.; Hüglin, C.; Emmenegger, L. Integration and calibration of
non-dispersive infrared (NDIR) CO2 low-cost sensors and their operation in a sensor network covering Switzerland. Atmos. Meas.
Tech. 2020, 13, 3815–3834. [CrossRef]

9. Aleixandre, M.; Gerboles, M. Review of Small Commercial Sensors for Indicative Monitoring of Ambient Gas. Chem. Eng. Trans.
2012, 30.

10. Marathe, S.; Nambi, A.; Swaminathan, M.; Sutaria, R. CurrentSense: A novel approach for fault and drift detection in environmen-
tal IoT sensors. In Proceedings of the International Conference on Internet-of-Things Design and Implementation, Charlottesvle,
VA, USA, 18–21 May 2021; pp. 93–105. [CrossRef]

11. Vafaei, M.; Amini, A. Chamberless NDIR CO2 Sensor Robust against Environmental Fluctuations. ACS Sens. 2021, 6, 1536–1542.
[CrossRef]

12. US EPA. Air Sensor Performance Targets and Testing Protocols | US EPA. 2024. Available online: https://www.epa.gov/air-
sensor-toolbox/air-sensor-performance-targets-and-testing-protocols (accessed on 24 January 2024).

13. Marinov, M.B.; Djermanova, N.; Ganev, B.; Nikolov, G.; Janchevska, E. Performance Evaluation of Low-cost Carbon Dioxide
Sensors. In Proceedings of the 2018 IEEE XXVII International Scientific Conference Electronics—ET, Sozopol, Bulgaria, 13–15
September 2018; pp. 1–4. [CrossRef]

14. Martin, C.R.; Zeng, N.; Karion, A.; Dickerson, R.R.; Ren, X.; Turpie, B.N.; Weber, K.J. Evaluation and environmental correction of
ambient CO2 measurements from a low-cost NDIR sensor. Atmos. Meas. Tech. 2017, 10, 2383–2395. [CrossRef]

15. Bastviken, D.; Sundgren, I.; Natchimuthu, S.; Reyier, H.; Gålfalk, M. Technical Note: Cost-efficient approaches to measure carbon
dioxide (CO2) fluxes and concentrations in terrestrial and aquatic environments using mini loggers. Biogeosciences 2015, 12,
3849–3859. [CrossRef]

16. Brown, S.L.; Goulsbra, C.S.; Evans, M.G.; Heath, T.; Shuttleworth, E. Low cost CO2 sensing: A simple microcontroller approach
with calibration and field use. HardwareX 2020, 8, e00136. [CrossRef]

17. Cai, Q.; Han, P.; Pan, G.; Xu, C.; Yang, X.; Xu, H.; Ruan, D.; Zeng, N. Evaluation of Low-Cost CO2 Sensors Using Reference
Instruments and Standard Gases for Indoor Use. Sensors 2024, 24, 2680. [CrossRef] [PubMed]

18. Kim, J.; Shusterman, A.A.; Lieschke, K.J.; Newman, C.; Cohen, R.C. The BErkeley Atmospheric CO2 Observation Network: Field
Calibration and Evaluation of Low-cost Air Quality Sensors. Atmos. Meas. Tech. 2018, 11, 1937–1946. [CrossRef]

19. Araújo, T.; Silva, L.; Aguiar, A.; Moreira, A. Calibration Assessment of Low-Cost Carbon Dioxide Sensors Using the Extremely
Randomized Trees Algorithm. Sensors 2023, 23, 6153. [CrossRef] [PubMed]

20. Pereira, P.F.; Ramos, N.M.M. Low-cost Arduino-based temperature, relative humidity and CO2 sensors—An assessment of their
suitability for indoor built environments. J. Build. Eng. 2022, 60, 105151. [CrossRef]

21. Rivero, R.A.G.; Hernández, L.E.M.; Schalm, O.; Rodríguez, E.H.; Sánchez, D.A.; Pérez, M.C.M.; Caraballo, V.N.; Jacobs, W.;
Laguardia, A.M. A Low-Cost Calibration Method for Temperature, Relative Humidity, and Carbon Dioxide Sensors Used in Air
Quality Monitoring Systems. Atmosphere 2023, 14, 191. [CrossRef]

22. Tryner, J.; Phillips, M.; Quinn, C.; Neymark, G.; Wilson, A.; Jathar, S.H.; Carter, E.; Volckens, J. Design and Testing of a Low-Cost
Sensor and Sampling Platform for Indoor Air Quality. Build. Environ. 2021, 206, 108398. [CrossRef]

23. Senseair. Sunrise Sunrise AB Specifications. 10 August 2023. Available online: https://senseair.com/products/power-counts/
sunrise/ (accessed on 28 August 2023).

24. Senseair. K30 K30, Senseair, Specifications. 14 August 2023. Available online: https://senseair.com/products/flexibility-counts/
k30/ (accessed on 14 August 2023).

https://doi.org/10.1016/j.jes.2021.04.003
https://doi.org/10.1002/2016JG003525
https://doi.org/10.1016/j.trd.2018.10.007
https://doi.org/10.1038/s41598-023-36575-6
https://www.ncbi.nlm.nih.gov/pubmed/37336925
https://doi.org/10.3390/s7091683
https://www.ncbi.nlm.nih.gov/pubmed/28903190
https://doi.org/10.1109/SENSOR.2005.1497296
https://doi.org/10.5194/amt-11-291-2018
https://doi.org/10.5194/amt-13-3815-2020
https://doi.org/10.1145/3450268.3453535
https://doi.org/10.1021/acssensors.0c01863
https://www.epa.gov/air-sensor-toolbox/air-sensor-performance-targets-and-testing-protocols
https://www.epa.gov/air-sensor-toolbox/air-sensor-performance-targets-and-testing-protocols
https://doi.org/10.1109/ET.2018.8549621
https://doi.org/10.5194/amt-10-2383-2017
https://doi.org/10.5194/bg-12-3849-2015
https://doi.org/10.1016/j.ohx.2020.e00136
https://doi.org/10.3390/s24092680
https://www.ncbi.nlm.nih.gov/pubmed/38732786
https://doi.org/10.5194/amt-11-1937-2018
https://doi.org/10.3390/s23136153
https://www.ncbi.nlm.nih.gov/pubmed/37448003
https://doi.org/10.1016/j.jobe.2022.105151
https://doi.org/10.3390/atmos14020191
https://doi.org/10.1016/j.buildenv.2021.108398
https://senseair.com/products/power-counts/sunrise/
https://senseair.com/products/power-counts/sunrise/
https://senseair.com/products/flexibility-counts/k30/
https://senseair.com/products/flexibility-counts/k30/


Sensors 2024, 24, 5675 14 of 14

25. Vaisala. GMP343 CO2 Probe GMP343 | Vaisala. January 2024. Available online: https://www.vaisala.com/en/products/
instruments-sensors-and-other-measurement-devices/instruments-industrial-measurements/gmp343 (accessed on 9 January
2024).

26. LGR-ICOS, ABB. LGR-ICOS Microportable Analyzers GLA131 Series—LGR-ICOS Portable Analyzers (Laser Analyzers) | ABB.
January 2024. Available online: https://new.abb.com/products/measurement-products/analytical/laser-gas-analyzers/laser-
analyzers/lgr-icos-portable-analyzers/lgr-icos-microportable-analyzers-gla131-series (accessed on 14 January 2024).

27. Baer, D.S.; Paul, J.B.; Gupta, M.; O’Keefe, A. Sensitive absorption measurements in the near-infrared region using off-axis
integrated-cavity-output spectroscopy. Appl. Phys. B Lasers Opt. 2002, 75, 261–265. [CrossRef]

28. Joseph, J.; Külls, C.; Arend, M.; Schaub, M.; Hagedorn, F.; Gessler, A.; Weiler, M. Application of a laser-based spectrometer for
continuous in situ measurements of stable isotopes of soil CO2 in calcareous and acidic soils. SOIL 2019, 5, 49–62. [CrossRef]

29. Wagner, W.; Pruß, A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general
and scientific use. J. Phys. Chem. Ref. Data 2002, 31, 387–535. [CrossRef]

30. US EPA. Performance Testing Protocols, Metrics, and Target Values for Fine Particulate Matter Air Sensors: Use in Ambient,
Outdoor, Fixed Site, Non-Regulatory Supplemental and Informational Monitoring Applications|Science Inventory|US EPA.
2021. Available online: https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=350785&Lab=CEMM (accessed on 17
December 2021).

31. Tranmer, M.; Elliot, M. Multiple Linear Regression; no. 5; The Cathie Marsh Centre for Census and Survey Research (CCSR):
Manchester, UK, 2008; Volume 5, pp. 1–5.

32. Elangovan, M.; Devasenapati, S.B.; Sakthivel, N.R.; Ramachandran, K.I. Evaluation of expert system for condition monitoring of
a single point cutting tool using principle component analysis and decision tree algorithm. Expert Syst. Appl. 2011, 38, 4450–4459.
[CrossRef]

33. Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobotics 2013, 7, 21. [CrossRef] [PubMed]
34. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
35. Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
36. Xu, Y.; Goodacre, R. On Splitting Training and Validation Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic

Sampling for Estimating the Generalization Performance of Supervised Learning. J. Anal. Test. 2018, 2, 249–262. [CrossRef]
37. Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.M.; Gräler, B. Random forest as a generic framework for predictive

modeling of spatial and spatio-temporal variables. PeerJ 2018, 6, e5518. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.vaisala.com/en/products/instruments-sensors-and-other-measurement-devices/instruments-industrial-measurements/gmp343
https://www.vaisala.com/en/products/instruments-sensors-and-other-measurement-devices/instruments-industrial-measurements/gmp343
https://new.abb.com/products/measurement-products/analytical/laser-gas-analyzers/laser-analyzers/lgr-icos-portable-analyzers/lgr-icos-microportable-analyzers-gla131-series
https://new.abb.com/products/measurement-products/analytical/laser-gas-analyzers/laser-analyzers/lgr-icos-portable-analyzers/lgr-icos-microportable-analyzers-gla131-series
https://doi.org/10.1007/s00340-002-0971-z
https://doi.org/10.5194/soil-5-49-2019
https://doi.org/10.1063/1.1461829
https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=350785&Lab=CEMM
https://doi.org/10.1016/j.eswa.2010.09.116
https://doi.org/10.3389/fnbot.2013.00021
https://www.ncbi.nlm.nih.gov/pubmed/24409142
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1007/s41664-018-0068-2
https://doi.org/10.7717/peerj.5518

	Introduction 
	Methodology 
	Measurement Site 
	Sensors 
	Reference Instrument 
	Sensors Assembly 
	Experimental Setup 
	Data Processing and Performance Evaluation 
	Sensor Calibration Using Machine Learning 

	Results and Discussion 
	Sensor Intercomparison 
	Machine Learning Algorithms for Correction 
	Environmental Chamber Measurements as Training Data 
	Limitations and Future Recommendations 

	Conclusions 
	References

