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Abstract
This Chapter examines theoretical and operational aspects of coor-

dinate systems. A distinction is made between the vector basis, a local
property of a coordinate system, and the overall coordinate frame con-
sisting of the vector basis and coordinate lines, a global property of the
flow that is determined by the flow field in three dimensions. Point
measurements can only define the vector basis. Because in field cam-
paigns many components that enter into the mass balance in complex
flows are severely under-sampled, a properly chosen coordinate frame
for point measurements should optimize our estimates of the surface-air
exchange and should maximize information for diagnostics purposes.

The strengths and weaknesses of three operational coordinate sys-
tems for point measurements (instrument, natural wind, and planar fit)
are examined in detail. That error in scalar fluxes due to coordinate tilt
is usually small for small tilt angles does not negate the need for coor-
dinate rotation because the tilt error can introduce a systematic bias to
the time integrated flux. On the other hand, it is also important that
over-rotation be avoided in post-field data analysis. Tilt errors caused
by contamination from the streamwise and cross-wind fluxes should be
treated differently.

Appendix B outlines a method for rotation into the planar fit coor-
dinate. The scheme relies on the straightforward vector operation and
avoids the need for rotation angles.

1 Introduction
Application of coordinate rotation is a necessary step in microme-

teorological studies of surface-air exchange before the observed fluxes
can be meaningfully interpreted. The most common rotation procedure
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uses measured mean wind to define an orthogonal vector basis, termed
natural wind system, for each observational period (e. g., 30 min) to
which all fluxes are transformed. The rotation scheme is intended to
level the sonic anemometer to the terrain surface. When it was first
proposed by Tanner and Thurtell in 1969 [see also Kaimal and Finnigan
(1994) and McMillen (1988)], the natural wind system was limited to a
surface layer in which the flow is one dimensional, that is, the velocity
and scalar concentration gradients exist only in the vertical and hence
no horizontal scalar advection nor flow divergence, and there is no wind
directional shear causing a cross-wind momentum flux. It appeared suf-
ficient from the 1960’s through the early 1990’s as most field experiments
then were conducted at ideal sites, over selected “golden days”, and in
fair weather conditions. The scope of micrometeorological research has
now been extended considerably, to include non-ideal sites and year-
round, continuous monitoring, and the validity of the procedure is now
called into question.

More recent rotation schemes (Wilczak et al. 2001, Paw U et al. 2000,
Lee 1998) attempt to overcome some of the deficiencies of the natural
wind system. However, like Tanner and Thurtell (1969), they do not in
fact treat coordinate systems at all but focus rather on the orientation
of the vector basis, �ei, in which vector and tensor quantities are to be
represented. This is an important and continuing question as the cir-
cumstances of most flux sites dictate that the wind field itself must be
used to orient �ei. The vector basis is a local property of a coordinate sys-
tem but it is the global properties of the flow field that dictate the form
of the mass balance equation that we employ to convert flux measure-
ments to measures of surface exchange and so it is vital to understand
the relationship between the two quantities as well as the advantages
and disadvantages of different coordinate systems.

Removal of “tilt errors” or cross-contamination among components
of the eddy flux vector is cited in the literature as the main reason
for performing coordinate rotation. Kaimal and Haugen (1969) and
others have shown that momentum flux is particularly sensitive to the tilt
errors. Scalar fluxes are not as sensitive, but the errors could potentially
cause a systematic bias in annually integrated eddy fluxes (Section 4).
It is known that a tilt-corrected flux does not necessarily represent the
true surface-air exchange because non-turbulent advective components
of the surface-layer mass balance may be non-negligible even at ideal
sites. A proper coordinate frame is vitally important to advance our
understanding of these issues.

Strictly, to use measurements of wind speed, concentration and eddy
flux to infer surface exchange of a scalar c involves the assimilation of
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measurements into a description of the mass balance in a control volume
V , erected over a representative patch of the surface (e. g., Figure 6.1 of
Chapter 6). The mass balance of c is the sum of the fluxes of c across
each face of the control volume plus the accumulation of c within the
volume. If we can measure the fluxes across each aerial face as well
as the rate of change of c within V , we can deduce the transfer across
the surface by difference. Whatever kind of instrumentation we employ,
however, we are only able to sample the aerodynamic flux and the rate
of change of c at a few points in space and we are forced to either supply
the missing information in other ways or develop good diagnostic tools
that can aid selective use of data.

The mathematical form of the mass balance that we employ has a con-
siderable bearing upon our ability to estimate its constituent terms from
a finite number of measurements. The two main factors affecting this
form are the averaging operations applied to the instantaneous variables
and the coordinate system in which the mass balance is represented.
The question of averaging operators and their relationship to coordinate
alignment is dealt with in detail in Finnigan et al. (2003) and Sakai et
al. (2001) although there, the only coordinate system considered is the
familiar rectangular Cartesian frame. Here we concentrate on the choice
of coordinate system and assume that an appropriate averaging operator
may be applied to the measurements.

This Chapter examines theoretical and operational aspects of coordi-
nate systems. It begins with a brief discussion of the theoretical con-
straints on the coordinate system. [The reader is referred to Finnigan
(2004) for more details.] This is followed by a discussion on the strengths
and weaknesses of three common coordinate frames for point measure-
ments, the instrument coordinate, the natural wind system, and the
planar fit coordinate (Section 3). Section 4 provides a assessment of
flux bias errors due to sensor tilt in horizontally homogeneous flow. Sec-
tion 5 discusses examples of coordinate tilt that are likely to occur in
field observations. In Section 6, a dataset obtained over a forest in com-
plex terrain is analyzed to examine the sensitivity of flux calculation to
coordinate rotation.

2 Theory

2.1 Mass balance at a point
A coordinate frame is meaningful only if it is consistent with the

frame used by equations that comprise, either explicitly or implicitly,
the theory underlying the study. Kaimal and Finnigan (1994) state, “...
problems occur when vector quantities like velocities or fluxes are mea-
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sured in a reference framework that does not coincide with that of the
equations used to analyze them”. The fundamental equation for surface-
air exchange studies is the mass conservation equation. Although in a
strictly formal analysis, all fluxes can be expressed as 3-dimensional
vectors with the gradient operator being independent of coordinate sys-
tem (Massman and Lee 2002), in practice a coordinate frame is needed
to estimate the surface-atmosphere exchange and the related turbulent
statistics, including the net ecosystem exchange (NEE).

The statement of conservation of a scalar c at a point in an incom-
pressible fluid is

∂c

∂t
+ ∇.�uc = S(�x)δ(�x − �x0) (3.1)

where the velocity vector �u has components u, v, w corresponding to po-
sition vector �x with components x, y, z. The source term S is multiplied
by the Dirac delta function, signifying that the source is zero except on
the ground and vegetation surfaces, whose locus is �x0. We have ignored
molecular diffusion, which is negligible except very close to solid sur-
faces when its effects can be conveniently absorbed in the specification
of the source strength, for example via the device of a boundary-layer
resistance. The scalar c represents any absolute fluid property such as
density of carbon dioxide or heat content. For alternative formulations
of the mass balance see Paw U et al. (2000) and Raupach (2001).

Each term in Equation 3.1 is a scalar and so is independent of the
coordinate frame. The individual components of the divergence term,
however, take different forms in different coordinate systems. There are
three overriding requirements guiding the choice of coordinate frame and
its orientation

We must be able to express our measurements in the chosen coor-
dinate frame.

Since we can rarely measure all the components of ∇.�uc, we want
to work in a coordinate frame that optimizes our ability to estimate
∇.�uc, using the terms we can measure.

If we want to assimilate our measurements explicitly into a math-
ematical model of flow and transport, we would like to be able to
construct such a model in the chosen coordinates.

In this Chapter we consider only the first two of these requirements.
We can illustrate the dependence of the form of the flux divergence

upon coordinate frame and orientation most simply through the exam-
ple of one-dimensional flow over horizontally homogeneous terrain. In
this case an appropriate coordinate system is the rectangular Cartesian
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Figure 3.1. The coordinate system should be such that the local normal to the surface
and the mean scalar gradient ∇c lie in the x-z plane.

frame and with an arbitrary orientation of the axes and with velocity
components u, v, w aligned with x, y, z respectively, the divergence of
the mean aerodynamic flux vector becomes,

∇.�uc =
∂uc

∂x
+

∂vc

∂y
+

∂wc

∂z
(3.2)

where the overbar denotes a time average.
One-dimensionality of the wind field and horizontal homogeneity of

the surface scalar source impose strong symmetries on the velocity and
scalar fields so that gradients of mean quantities depend only on distance
from the surface. Hence, if we orient �ei so that the z axis is normal to
the surface we find

∇.�uc = 0 + 0 +
∂wc

∂z
(3.3)

In this case the divergence operator can be estimated, at least in finite
difference form, from anemometers and scalar sensors on a single tower
orientated along the surface-normal z axis. A more general message
can be drawn from this example, however. It reminds us that the major
symmetries of the wind field and the scalar source distribution determine
the alignment of gradients of mean moments of the velocity and scalar
fields. In fact it is the symmetry of the wind field that the natural wind
system was built upon.
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If we move from one-dimensional to two- and three-dimensional flows,
we expect that the alignment of flow streamlines1, which will now be
space curves, and the directions in which the scalar source distribution
changes most rapidly will continue to determine the strongest symme-
tries of the resultant mean fields and thereby the gradient of the aerody-
namic flux vector. Consider for example, boundary-layer flow over gently
undulating terrain with horizontal changes in scalar source strength on
scales of kilometers or greater. The mean streamlines close to the sur-
face will be approximately parallel to the ground while the gradients
of mean moments of the wind and scalar fields in the surface-normal,
cross-streamline direction will be much larger than streamwise gradi-
ents. Hence we can write

∂wc

∂z
>>

∂uc

∂x
,
∂vc

∂y
(3.4)

where the x and y directions are now aligned in the streamwise direc-
tion and in the cross-stream direction parallel to the local surface, re-
spectively. Equivalently we can say that the local normal to the surface
must lie in the x-z plane (Figure 3.1). In analogy to the case of one-
dimensional flows, the best approximation to the divergence that can
be obtained from an alignment of anemometers along a single tower is
obtained when the instruments are located in the plane spanned by the
mean wind vector and the local normal to the surface.

Flows where the mean streamlines are approximately parallel to the
surface and Equation 3.4 is satisfied are sometimes referred to as ‘Fairly
Thin Shear Layers’ (FTSL) (Bradshaw, 1973). Most long-term flux
study sites conform to the FTSL description, even those in complex
terrain. Henceforth, we will refer to terrain where the flow satisfies
FTSL criteria as ‘gentle’ terrain. At such locations, we can expect that
measuring wc/∂z with x tangent to the streamline and the x-z plane
normal to the surface will yield the best approximation to ∇.�uc that we
can obtain from instruments orientated along a single straight line. For
a practical example of this see Geissbuhler et al. (2000). As the scale of
variation of the mean velocity and the scalar source in the streamwise
direction begins to approach that in the cross-stream direction, however,

1Streamlines are curves in space that are everywhere tangent to the local velocity vector.
The streamlines passing through an arbitrary curve that is not itself a streamline form a
stream surface. If the velocity vector �u is a time averaged quantity, then the streamlines and
stream surfaces belonging to the steady vector field �u(�x) are fixed in space. Solid surfaces

are stream surfaces by definition, as the normal component of �u is zero at such a surface.
For more complete definitions of these objects see any standard text on fluid mechanics, e.
g., Batchelor (1967) and for a comment on the limitations of the concept of a stream surface
see Finnigan (1990).
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this approximation rapidly becomes poor. Nevertheless, at micrometeo-
rological sites chosen to avoid the grossest inhomogeneities in topography
and source distribution, the optimal coordinate system in which to write
the mass balance is one whose coordinate lines are aligned as shown in
Figure 3.1.

So far we have concentrated on the mass balance at a point and the
local orientation of the coordinate lines. In practice we want to estimate
the mass balance in a control volume over a representative patch of
surface. To do this we need to write the mass balance in integral form,
which requires us to specify the coordinate system in which we intend
to represent it as this determines the geometry of the coordinate lines
along which we shall integrate. In the next section we will review the
properties of two candidate systems whose coordinate lines have the local
orientation specified above.

2.2 Coordinate systems
Coordinate systems provide two essential ingredients for the math-

ematical description of the mass balance: they specify the magnitude
and direction of a vector basis �ei in terms of which all vector and tensor
quantities can be written, e. g.

�u = u�1 + v�2 + w�3 (3.5)

u, v, w being the components of the velocity vector �u in the basis �ei.
They also provide coordinate lines, whose intersections can be used to
locate points in space and along which we integrate, e. g., we write
�u(�x) ≡ �u(x, y, z) meaning the value of vector �u at the position labeled
by distances x, y, z, respectively from the origins of the coordinate lines.
The vector basis, �ei is linked to the coordinate lines. For example, �e1

might be defined as the unit tangent to the x coordinate line.
Except in the simplest case of steady one-dimensional flow over a plane

surface, in which case the mean streamlines are straight lines parallel
to the surface, a coordinate system that has its x lines approximately
parallel to and its z lines normal to the streamlines will be curvilinear.
Some salient points of curvilinear coordinate systems together with some
useful references are given by Finnigan (2004). In the next section we
will discuss two coordinate systems in detail: rectangular Cartesian and
physical streamline coordinates, which essentially bound the range of
appropriate choices.
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2.2.1 Rectangular Cartesian coordinates

In this familiar system the vector basis �ei is orthonormal and the coor-
dinate lines are straight and orthogonal and everywhere parallel to �ei so
that the x coordinate is parallel to �e1 , y is parallel to �e2 and z is parallel
to �e3. The instantaneous mass balance equation (Equation 3.1) written
in Cartesian coordinates (from now on we will drop the qualification
‘rectangular’) is

∂c

∂t
+

∂uc

∂x
+

∂vc

∂y
+

∂wc

∂z
= Sδ(�x − �x0) (3.6)

and the time averaged form of this equation is

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z
+

∂u′c′

∂x
+

∂v′c′

∂y
+

∂w′c′

∂z
= Sδ(�x − �x0) (3.7)

where the overbar denotes a simple time average (Finnigan et al. 2003)
and the prime denotes an instantaneous departure from the average.

An important property of rectangular Cartesian coordinates is that,
once the vector basis has been defined at any point in space, its orienta-
tion and that of the coordinate lines is defined everywhere (Figure 3.2).
In particular, if we determine the x, �e1 direction by making it parallel
to the mean velocity vector measured by a sonic anemometer on a tower
and if the mean streamline at the anemometer is not parallel to the
underlying surface, then the z axis cannot be normal to the surface.

2.2.2 Physical streamline coordinates

Physical streamline coordinates are defined by the flow field itself.
The instantaneous flow must first be averaged in time to define a set of
mean streamlines, which become the x coordinate lines. Hence a given
turbulent flow field can generate different streamline coordinate frames
depending upon the way the flow is averaged. Like Cartesian coordi-
nates, streamline coordinates employ the orthonormal basis �ei but this
is now orientated so that �e1 is always tangent to the local streamline, �e2

is aligned with the principal normal2ll to the streamline and �e3 is aligned

2The principal normal to a streamline lies in the plane that is tangent to the streamline and
in which the curvature of the streamline is greatest. The binormal is perpendicular to the
plane spanned by the tangent and the principal normal and the three vectors, the tangent,
principal normal and binormal form the orthonormal Frenet Frame. In two-dimensional
flow fields the binormals and the y coordinate lines are parallel to the surface so that the z
coordinate lines intersect the surface normally. Hence the physical streamline coordinates of
horizontally homogeneous flow over a flat surface are just rectangular Cartesian coordinates
with the z axis normal to the surface.
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Figure 3.2. a. The orientation of a Cartesian coordinate system is determined once
the base vectors are orientated at a single point, usually the anemometer position.
b. If the z axis intersects the ground at an angle γ, the area of ground surface that
supplies a flux of mass into the prism dx × dy × z is dx × dy/ cos γ.

with the binormal to the streamline (Figure 3.3). The coordinate lines
x, y, z are respectively, the streamlines (x), the set of curves everywhere
tangent to the binormals (y) and the set of curves everywhere parallel
to the principal normals (z) (Figure 3.3). Note that in physical stream-
line coordinates, the y coordinate lines are associated with the �e3 base
vectors and the z lines with �e2. This is a consequence of the micrometeo-
rological convention where we take the positive z direction as increasing
normally from the surface. Streamline coordinates are described for two-
dimensional flows by Finnigan (1983) and for three-dimensional flows by
Finnigan (1990) and Kaimal and Finnigan (1994). Their application to
long term flux measurements is treated in much more detail in Finnigan
(2004). Two-dimensional streamline coordinates have been employed
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Figure 3.3. The vector basis of physical streamline coordinates is determined by the
orientation of the streamline. Here �e1 is the (normalized) tangent, �e2 the (normal-
ized) principal normal and �e3 the (normalized) binormal to the streamline. The z
coordinate lines are tangent to the field of �e2 vectors and the y coordinate lines are
tangent to the field of �e3 vectors, while the streamlines form the x coordinates.

in analyses of complex flow fields, e. g. Finnigan and Bradley (1983),
Zeman and Jensen (1984).

The time averaged mass conservation equation in three-dimensional
streamline coordinates is

∂c

∂t
+ u∂x∂ c = −∂x∂ u′c′ − ∂y∂∂ v′c′ − ∂z∂ w′c′ − [

1
La

]u′c′ + [
1
r

∂r

∂y
]v′c′

−[
1
R

+
1
r
]w′c′ + Sδ(�x − �x0) (3.8)

where
1
La

=
1
u

∂x∂ u, R is the local radius of curvature of the streamline

and r is the local radius of curvature of the y coordinate lines. One
consequence of using curvilinear systems like streamline coordinates but
retaining the orthonormal vector basis �ei so variables have their familiar
meaning is that the derivatives in the equations are directional rather
than partial derivatives and we have written them as ∂x∂ , ∂y∂∂ etc. to
distinguish them from partial derivatives. However, for most practical
applications directional and partial derivatives are interchangeable. The
main difference that needs to be kept in mind when doing mathematical
manipulation of streamline coordinate equations is that derivatives along
orthogonal coordinate lines do not commute so ∂x∂ ∂y∂∂ φ − ∂y∂∂ ∂x∂ φ �= 0,��



Coordinate Systems and Flux Bias Error 43

where φ(x, y, z) is an arbitrary function (Finnigan, 1990). Momentum
equations and rate equations for the components of the Reynolds stresses
in this coordinate frame may be found in Kaimal and Finnigan (1994).

We see in Equation 3.8 that in streamline coordinates the advection
term has been simplified relative to Equation 3.7 so that only stream-
wise advection appears in the equation but that the flux divergence has
acquired extra terms that arise because of the changing orientation of �ei

in space and because the infinitesimal control volume dxdydz changes
shape as streamlines converge or diverge. On comparing the eddy flux
terms in Equations 3.7 and 3.8 it is apparent that these extra terms all
involve the radii of curvature of the coordinate lines.

2.2.3 Other coordinate systems

Mathematical models of flow and transport over complex terrain are
often developed in various kinds of surface-following coordinate sys-
tems. See for example, Howarth (1951), Bradshaw (1973), Pielke (1984),
Ferziger and Peric (1997). While these systems offer advantages for con-FF
structing models, they have significant disadvantages for interpreting
tower measurements. The main ones are that the coordinate systems
are generally non-orthogonal and the associated vector bases are not or-
thogonal unit vectors so that the dependent variables in these systems
do not correspond to the physical quantities that our instruments mea-
sure. We will not discuss such systems further here. For a more detailed
appreciation see Finnigan (2004).

2.3 Advantages and disadvantages of Cartesian
and streamline coordinate systems

A comparison of Equations 3.7 and 3.8 shows that the mass balance
expressed in streamline coordinates has a simplified advection term but
a more complicated expression for the flux divergence with three extra
terms to estimate. In gentle terrain it is probably easier to estimate
the parameters La, R and r than it is to estimate the cross stream
advection terms v∂c/∂y + w∂c/∂z as R and r can be approximated as
R = R0 + z and r = r0 + z, where R0 and r0 are the curvatures of
the surface and can be calculated from a digital elevation or contour
map. In steeper topography, however, this advantage is lost and multi-
point measurements are required to close the mass balance whichever
coordinate frame it is written in.

Another advantage of streamline coordinates is that the vector basis
�ei is everywhere aligned with the local mean wind vector �u so that a
series of anemometers can be combined in the mass balance calculation
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once their outputs have been rotated into the local �ei basis. In Cartesian
coordinates, in contrast, once the orientation of �ei has been determined
for one anemometer, it is fixed everywhere in space and the orientations
of additional anemometers relative to the first must be known to use
their outputs in the mass balance calculation.

To move from the time averaged mass balance at a point as expressed
by Equations 3.7 and 3.8 to the integral mass balance in a control vol-
ume, we need to integrate Equations 3.7 and 3.8 over a prism whose
lower face is the vegetated surface and whose aerial faces are determined
by the coordinate surfaces. This raises the issue of determining these
surfaces which in gentle terrain is somewhat easier in the case of stream-
line coordinates than in Cartesian coordinates. In steep terrain however,
neither system is obviously superior to the other. A more complete treat-
ment of the pros and cons of the two coordinate systems may be found
in Finnigan (2004).

3 Coordinate Systems for Point Measurements

3.1 General considerations
This Section discusses three coordinate frames that are used most

frequently for the interpretation of point eddy covariance measurements.
These coordinate frames all define a local vector basis in which vector
quantities such as air velocity and eddy flux are expressed. In addition,
none of them uses the scalar concentration and flux fields to constrain
the vector basis. This second feature is an important one because any
other coordinate systems constrained in whole or in part by the scalar
flux vector will give physically unrealistic results.

In Section 2, we make a distinction between the vector basis, a local
property of a coordinate system, and the overall coordinate frame con-
sisting of the vector basis and coordinate lines, a global property of the
flow that is determined by the flow field in three dimensions. From an op-
erational viewpoint, point measurements can only define the local vector
basis. Even with multiple sensors, it is extremely difficult to determine
coordinate lines of the global coordinate frame because the sensors can
rarely be aligned relative to one another with sufficient accuracy. Fur-
thermore, point measurements give some but not all of the terms of the
surface-layer mass balance. It is therefore crucial that we work in coor-
dinate frames that optimizes our ability to estimate surface-vegetation
exchange such as NEE, using the terms we can measure. A suitable
coordinate frame must also maximize information for diagnostics pur-
poses (e. g., to answer the question of whether atmospheric conditions
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are too limiting to allow a meaningful NEE estimate) and for advancing
our understanding of the 3-dimensional nature of the flow.

Unfortunately, in the authors’ opinion, the information produced by
eddy covariance has not been fully utilized because most field studies
focus too narrowly on the vertical eddy fluxes such as CO2 flux and the
streamwise momentum flux. It is known that even at ideal sites, the
30-min mean velocity vector can depart from the local terrain surface.
Recovery of the mean vertical velocity may help us determine whether
the observation suffers from undersampling of low frequency eddies or
from the influence of mesoscale motion at scales larger than the scale of
the flux footprint. It is also known that v′w′, the cross-wind momentum
flux, cannot be assumed to equal zero in the ocean atmospheric surface
layer (Wilczak et al. 2001), at sites on rolling topography (Section 6), and
at times when wind directional shear exists in the surface layer. Tanner
and Thurtell (1969) pointed out that when u′v′ (covariance between the
streamwise and lateral velocity components) is not zero, conditions are
not ideal and local divergence caused by fetch or surface inhomogeneity
may be occurring. Lee (2004) discussed the mechanism of generation
of the horizontal eddy flux, u′c′, in the surface layer and how it can
be used provide additional information on the advective influences on
flux observations. These quantities are physically meaningful only if a
coordinate is chosen properly.

A suitable coordinate system also provides a consistent framework for
data analysis. This is especially true if one wishes to recover flux loss at
low frequencies (Finnigan et al. 2003, Sakai et al. 2001, Chapter 5). In
this regard, rotation at every 30 min interval, which is equivalent to high-
pass filtering, produces the undesirable effect of having turbulent time
series that are discontinuous. Similarly, construction of ensemble mean
spectra and cospectra should be done in an appropriate coordinate frame
so that the low frequency contributions to the spectra are not missed.

3.2 Instrument coordinate

This is an orthogonal coordinate frame deployed by the anemometer
to express the components of the wind and the associated eddy flux vec-
tors. In some modern designs, the transducers of the sonic anemometer
are arranged non-orthogonally to minimize flow interference. Projection
of the velocity vector from the non-orthogonal to the desired orthogonal
frame involves straightforward geometric transformation, which is ac-
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Figure 3.4. Contour plot of instrument velocity components showing the interference
on air motion by the instrument tower at the Wind River site, Washington, U. S. A.
(Paw U et al. 2004).

complished by firmware for the user. The geometry of the anemometer
has some bearing in the way correction is made for the cross-wind effect
on the sonic signal (Kaimal et al. 1990, Liu et al. 2001) and for flux loss
due to pathlength averaging (Chapter 4)3.

The base vectors of the instrument coordinate system are fixed once
the position of the anemometer is known relative to some geographic
reference. For example, the �e1 vector may be pointing to the north, the
�e3 vector to the west, and the �e2 vector aligned with, and in the opposite
direction of, the gravitational force if the anemometer is leveled. In this
sense, the instrument coordinate is an absolute one that is independent
of the flow field. Micrometeorologists without exception should always
archive the data of velocity statistics and flux cross products expressed
in this coordinate. Although the flux cross products must undergo coor-
dinate rotation, the velocity data themselves can be useful in many other
ways. For example, the instrument velocity components can be used to
determine wind direction, to infer the extent of aerodynamic interference

3Strictly, correction for flux loss due to pathlength averaging should be made with the ve-
locity spectra in the non-orthogonal coordinate aligned with the separation direction of the
transducers, not in any other coordinate (e. g., the natural wind system) unrelated to the
geometry of the sonic anemometer design.
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by the measurement platform (Figures 3.4 and 3.7), and to determine
the orientation of the base vectors, in the instrument coordinate system,
of the planar fit coordinate system (Appendix B).

3.3 Natural wind coordinate
Tanner and Thurtell (1969) define the natural wind coordinate system

as a right-handed system in which the x-axis is parallel to the (30-min)
mean flow with x increasing in the direction of the flow, the z-axis is
normal to and pointed away from the underlying surface. It assumes
that there is no correlation between the lateral and vertical velocities
(v′w′ = 0). Transformation to this coordinate is accomplished by a two-
step rotation procedure involving three rotation angles. For the reader’s
convenience, a brief account of their procedure is given in Appendix A.
The complete description can be found in their original report and in
McMillen (1988).

An obvious advantage of the natural wind coordinate is that by forc-
ing the mean lateral and cross wind components to zero, it aligns the x
axis to the streamline at the measurement point. In an idealized homo-
geneous flow, this serves the function of leveling the anemometer to the
surface. It offers a consistent frame through time for periods when the
anemometer position has been moved frequently.

If multiple sensors are deployed in the streamwise direction, by align-
ing the x axis with the local wind vector at each sensor location, mea-
surements can be expressed in a common streamline coordinate. In
Section 2, we suggest that in gentle terrain the streamline coordinate is
the best frame to assess mass balance (Equation 3.8). Obviously, this is
a formal analysis and needs to be verified by experimental tests.ff

Another important feature of the natural wind coordinate is that it
allows online computation of the fluxes. While scalar fluxes are not par-
ticularly sensitive to tilt errors, velocity cross products in the instrument
coordinate usually do not make much sense until a coordinate rotation is
made. The ability to transform in real-time the velocity cross products
to the streamwise momentum flux in a coordinate aligned, albeit ap-
proximately, to the surface will help the investigator detect instrument
malfunction. For example, a positive covariance u′w′ after rotation usu-
ally indicates problems with the sonic anemometer.

At the time of its publication, the natural wind system was intended
for a surface layer in which the flow is one dimensional, and there is
no wind directional shear causing cross-wind momentum flux (that is,
v′w′ = 0). It is a suitable system for experiments conducted at ideal
sites, over selected “golden days”, and in homogeneous flow, fair weather
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conditions. In short field campaigns at a sloped site, McMillen (1988)
found that rotation to the natural wind system significantly improved
his results. However, the drawbacks of the system have become apparent
now that the scope of micrometeorological research has been extended
considerably to include non-flat sites as well as year-round, continuous
monitoring. Some of the limitations can be summarized as follows:

Over-rotation: By forcing the mean vertical velocity to zero forff
every observational period, we run the risk of over-rotation. Sec-
tion 5 gives a list of examples on when this may actually occur.
Over-rotation may result in a systematic bias error in the time-
integrated flux.

Loss of information: Most field campaigns deploy only one eddy
covariance system. The theoretical advantage of aligning the co-
ordinate with the local wind vector is no longer compelling, since
it is not possible to close the mass balance with one single sensor,
and is outweighed by the disadvantage of information loss. For ex-
ample, a nonzero w may exist due to thermal circulation and free
convection. In rolling terrain and in direction shear (in the vertical
sense) flow conditions, it is not valid to assume v′w′ = 0. While
these quantities themselves do not permit a full mass balance clo-
sure, they offer useful information on the 3-dimensional nature of
the flow influencing the measurement.

Degradation of data quality: It is shown that the data quality is
lower for rotation into the natural wind coordinate in comparison
to the planar fit method (Chapter 9). One reason for this has to do
with unrealistically large rotation angles in low wind conditions.
When this occurs, the z axis is no longer in a direction along which
the divergence of the eddy flux is maximized. That v′w′ �= 0 in��
advective flow also contributes to the problem. Finnigan (2004)
points out that the third rotation angle (angle β, Appendix A)
constrained by forcing v′w′ to zero has a closure problem and often
gives physically unrealistic results.

3.4 Planar fit coordinate
This is a right-handed orthogonal coordinate in which the z-axis is

perpendicular to the mean streamline plane and the y-axis is perpendic-
ular the plane in which the short-term (30 min) velocity vector �u and
the z axis lie. The mean streamline plane is determined from an en-
semble of observations made over weeks or longer. In this system the z
coordinate is fixed over the chosen period, and x and y axes are variable
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Figure 3.5. An example of planar fit regression with wind data over a maize canopy
in Davis, California (Paw U et al. 2000).

with time. Strictly, the system is not a streamline coordinate because
its base vectors are not aligned with the short-term mean streamline.

The steps involved in the rotation from the instrument coordinate to
the planar fit coordinate are:

Determine a period (weeks or longer) during which there was no
change in the anemometer’s position relative to the surface.

Perform linear regression, w1 = b0 + b1u1 + b2v1, using data from
the chosen period to define a “tilted plane”, or the mean streamline
plane (Figure 3.5), where b0, b1 and b2 are regression coefficients,
and {u1, v1, w1} are components of the (30-min) mean velocity in
the instrument coordinate system.

Use the regression coefficient b1 and b2 to determine the pitch,
roll and yaw angles for rotation as in Wilczak et al. (2001) or
alternatively, the base vector set that defines the three coordinate
axes (Appendix B).

Project the velocity and flux cross products into the new coordi-
nate system.

The planar fit method overcomes some of the deficiencies of the nat-
ural wind coordinate system. The coordinate axes are not prone to
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the effect of instrument offset because the offset is eliminated by the
least squares procedure. The z coordinate is independent of wind di-
rection, minimizing the problem of over-rotation in the presence of the
aerodynamic shadow produced by the sensor structure (Figure 3.7). By
relying on a large ensemble of observations, the coordinate frame is sta-
ble through time and the x-y plane is more or less parallel to the local
surface4. Most importantly, with the planar fit or other similar long-
term coordinates, it is possible to recover information on the 2- and
3-dimensional nature of the flow field, such as the mean vertical veloc-
ity, from observations made at a single point.

In recent years the residual mean vertical velocity in the long-term
coordinate has received considerable attention. Wilczak et al. (2001)
consider the residual as random noise. Lee (1998), Baldocchi et al.
(2000) and Paw U et al. (2000) combine the residual with the continuity
equation to estimate the contribution of vertical advection to the sur-
face layer mass balance. Finnigan (2004) views it as being indicative
of low frequency contributions to the total flux. Because it is usually
small in magnitude, the mean vertical velocity is very sensitive to mea-
surement artifacts. To recover the mean vertical velocity that is truly
meteorological remains a challenging task.

Several practical considerations should be kept in mind when apply-
ing the planar fit method. Every time the sonic anemometer is moved, a
new base vector set or rotation angles should be determined. The rota-
tion method assumes that the instrument offset in the vertical velocity,
if any, is constant throughout the period chosen for the coordinate de-
termination, which is made possible by the advance in the technology
of sonic anemometry. Clearly, the method should not be used in situ-
ations where the offset is not stable, or when the anemometer position
has been changed too frequently. In principle, the planar fit method can
be implemented in the realtime computation of fluxes providing that the
base vector set has been previously determined. Finally, the influences
of atmospheric stability, strong winds, and change in foliage morphology
on the rotation angles remain to be investigated.

4 Flux Bias Error due to Coordinate Tilt
Let us consider once again the example of one-dimensional, non-

convergent wind field and horizontal homogeneity of the surface scalar
source over horizontallyhomogeneous terrain. According to Equations3.1-

4Sites where a systematic vertical motion exists are exceptions to this. A case in point is a
forest edge where the streamline is always titled at an angle from the surface (Irvine et al.
1997, Li et al. 1990).
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3.3, the eddy flux w′c′ is now equivalent to the true surface-air exchange.
(For simplicity, we will ignore the storage correction.) Similarly, the eddy
momentum flux u′w′ represents the true surface shear stress. The mea-
surement will suffer a tilt error if it is expressed in a coordinate whose
vector base �e2 or the z axis is tilted from the direction normal to the
surface.

4.1 Momentum flux bias
The tilt error in the momentum flux has been quantified by Wilczak

et al. (2001) using the mixed-layer and surface layer similarity functions.
They showed that for a 1◦ tilt, the error is typically greater than 10% in
the surface under moderately unstable conditions and can be as large as
100% under free convection conditions. The error is probably even larger
in stable conditions because of poor correlation between the streamwise
and vertical velocities (Kaimal and Haugen 1969). Such a bias error
is highly undesirable in the context of the Monin-Obukhov similarity
because friction velocity is a velocity scale and a parameter used to define
the Monin-Obukhov length and the scale for the scalar concentration.
This leads to the stringent requirement of an accuracy of at least 0.1◦
in the internal alignment and mounting of the anemometer (Kaimal and
Haugen 1969).

In the context of long-term observation of surface-air exchange of en-
ergy and materials, an accurate measurement of the momentum flux will
aid gap filling and data quality control. For example, friction velocity is
used to screen nighttime data for well-mixed conditions (Goulden et al.
1996). If the tilt error is large, it may be difficult to establish a friction
velocity threshold for CO2 flux. Also when applying spectral corrections
to the flux, one needs an accurate measurement of stability and therefore
momentum flux (Chapters 4 and 5).

4.2 Scalar flux bias
To assess the scalar flux bias error, let variables with subscript 1

denote quantities in a Cartesian coordinate tilted at an angle, α, from
the correct one and variables without the subscript denote quantities in
the correct coordinate. Here α is positive if the instrument is tilted into
the wind and negative otherwise. The vertical eddy flux in the tilted
coordinate, w′

1c
′, can be expressed as

w′
1c

′ = w′c′ cos(α) + u′c′ sin(α). (3.9)
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Using the following approximate relationship

u′c′ = a
u′w′

w′2 w′c′ (3.10)

to eliminate the dependence on the horizontal eddy flux, u′c′ (Lee 2004),
we obtain

w′
1c

′ = w′c′ cos(α) + a
u′w′

w′2 w′c′ sin(α). (3.11)

Here a is an empirical constant (a = 2.4 and 3.3 for unstable and stable
conditions, respectively). Equation 3.11 is combined with the Monin-
Obukhov similarity to yield

σw

u∗
=

{
1.25(1 − 3z/L)1/3 for z/L ≤ 0

1.25 for z/L > 0
(3.12)

to investigate the flux bias error (Figure 3.6), where σw is the vertical
velocity standard deviation, u∗ is friction velocity, and z/L is the Monin-
Obukhov stability parameter.

Figure 3.6 shows that the scalar flux is less sensitive to sensor tilt than
the momentum flux, with a tilt error usually less than 5% for small tilt
angles (α < 2◦). However, we should be aware of two types of systematic
bias that can occur in the time integration of carbon flux. In the first,
the sensor tilt angle is fixed at all times, but because the tilt error is
larger in stable (nighttime) than in unstable (daytime) conditions, the
overall error does not cancel out. In the second, wind direction exhibits
a systematic diurnal pattern (e. g., land/sea breezes) so that the tilt
angle is negative in the daytime and positive at night. This second
scenario is particularly undesirable because the tilt error is of opposite
sign for day versus night. If we take a typical growing season CO2 flux
of -0.5 and 0.2 mg m−2s−1 for daytime and nighttime, respectively, and
a 4% overestimation and a 5% underestimation due to a −2◦ and 2◦
tilt for daytime and nighttime, respectively (Figure 3.6), the bias in the
monthly flux sum is estimated at 20 g C m−2, or on the order of 10% of
the annual NEE of some temperate forests.

In this simple example of 1-dimensional flow, the global property of
the coordinate system is uniquely determined by the local vector basis
at the measurement location. The general conclusion is applicable in
weakly 2- and 3-dimensional flows. In this case, the optimal coordinate
for point measurements should have its x− z plane perpendicular to the
local terrain surface (Figure 3.1) and the tilt error discussion should be
cast in reference to this coordinate.

It should be pointed out that the above error assessment is limited to
the eddy flux only. Errors in the overall NEE estimate caused by neglect
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Figure 3.6. Scalar flux bias error as a function of the Monin-Obukhov stability pa-
rameter for four tilt angles.

of non-turbulent advective fluxes (e. g., w c) could be significantly larger
in 2- and 3-dimensional flows.

5 Examples of Coordinate Tilt
Coordinate tilt can occur in several ways. The most obvious one is a

physical tilt of the instrument relative to the correct coordinate frame.
This can be minimized on level terrain by carefully mounting the sen-
sor, but is unavoidable on sloped terrain because the x-y plane of an
instrument leveled with respect to the geopotential is not parallel to the
local terrain slope and thus is tilted from the most appropriate coordi-
nate frame. Post-field rotation schemes attempt to remove the tilt by
using wind statistics, each making a different assumption regarding the
flow dynamics in the surface layer. The natural wind system assumes
horizontal flow homogeneity for every observational period and thus the
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velocity vector is assumed to be always parallel to the surface. A co-
ordinate system derived from an ensemble of observations assumes that
the ensemble mean velocity vector is parallel to the surface, while the
velocity vector over individual observational periods can intercept the
surface thus allowing non-zero mean vertical velocity.

Coordinate tilt can also occur if the instrument vertical velocity has
an electronic offset. [Wilczak et al. (2001) point out that offset in the
instrument horizontal velocity components is not a concern.] The instru-
ment may be perfectly aligned with the optimal coordinate frame, but
in post-field rotation, such as that of Tanner and Thurtell (1969), that
forces the 30-min mean vertical velocity to zero for every observation,
we end up with flux and wind statistics in an incorrect reference frame.
If a typical mean velocity is 2 m s−1, a 5 cm s−1 offset in the instrument
vertical velocity is equivalent to a 1.5◦ tilt. This “over-rotation” will in-
troduce a bias to the integrated carbon flux especially if wind direction
changes systematically from day to night. The instrument zero offset
can be measured in the field by putting the anemometer in a zero wind,
anechoic chamber and be removed from the signal before coordinate ro-
tation is performed. Care should be exercised to ensure that the zero
wind chamber is not subject to differential heating as to create convec-
tive motion inside. Alternatively, the offset can be removed by a least
squares regression on the assumption that it remains constant over the
entire experimental period (Paw U et al. 2000; Appendix B).

Another cause of coordinate tilt arises from 2- or 3-dimensional air
motion. If there is horizontal flow convergence/divergence, the (30-min)
mean velocity vector will no longer parallel to the terrain surface. Once
again, a tilt error will result from the mean vertical velocity being forced
to zero by post-field rotation. In this regard, a coordinate system based
on velocity data obtained over long periods is more robust, particularly
at times of low wind speed when the natural wind system often gives
unrealistically large rotation angles.

The anemometer supporting frame and the instrument tower can de-
flect the flow to the extent that can lead to a tilted coordinate in post-
field data analysis. Figure 3.7 shows an example of this problem. The
tilt factor b was determined by linear regression of the instrument mean
vertical velocity, w1, against the instrument horizontal velocity, u1, as
in

w1 = a + bu1, (3.13)

over successive 15◦ wind direction bins (Lee 1998). The sinusoidal be-
havior of b as a function of wind direction, expected for the ideal case
of flow free of aerodynamic interference, was not observed, suggesting
the aerodynamic shadow effect on the measurement. In fact, the 120◦
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Figure 3.7. Vertical tilt factor as a function of wind direction for omnidirectional
Kaijo Denki sonic anemometers at two measurements heights in a boreal aspen forest
in Prince Albert, Saskatchewan, Canada.

repetitive pattern shown in Fig 3.7 corresponds to the three vertical
supporting frames of the anemometer arranged 120◦ apart. According
to Figure 3.7, by forcing the mean velocity to zero, the natural wind
system can tilt the coordinate by as much as 3◦. A reasonable solution
to this problem is the planar fit method discussed above, which uses the
data from all wind directions to determine a more stable reference frame
independent of wind direction.

Finally, forcing the cross-wind momentum flux v′w′ to zero may result
unrealistically large rotation angles (Section 6). The tilt error in this case
arises from contamination of the vertical flux w′c′ by the cross-wind flux
v′c′ (Equation 3.17), and is usually much smaller than that arising from
contamination by the streamwise flux u′c′ (Equation 3.9).

6 Analysis of a Sample Dataset

6.1 Dataset
In this Section, we use a dataset obtained over the Great Mountain

Forest in rolling terrain to investigate the effect of coordinate rotation
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Figure 3.8. Comparison of CO2 flux (mg m−2 s−1) in the natural wind and planar
fit coordinates. Solid line represents 1:1.

on the flux measurement. A detailed description of the site and mea-
surement system is given by Lee and Hu (2002). Briefly, the eddy co-
variance system was mounted at a height of 30.4 m, roughly 10 m above
the treetops. The data obtained over June to July, 1999 was used in
this analysis. The 30-min velocity and flux cross product matrix was
first computed in the instrument coordinate and then transformed to
the natural wind coordinate system. Rotation into the planar fit coor-
dinate was carried out in the post field analysis. Over this period, the
unit vector in the direction of the z axis of the planar fit coordinate was
{0.060,−0.078, 0.990} (Appendix B). Density corrections were applied
to carbon and water vapor fluxes in all three coordinate systems.

6.2 Results
Figures 3.8 and 3.9 compare the CO2 flux and the streamwise momen-

tum flux in the natural wind and planar fit coordinate systems. Although
statistically the slope of the regression is not different from the 1:1 line,
some scatter is evident. The time integrated C flux over the two month
period was -84.4, -84.8 and -88.1 g C m−2 in the instrument, natural
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Figure 3.9. Comparison of the streamwise momentum flux (u′w′, m2 s−2) in the
natural wind and planar fit coordinates. Solid line represents 1:1.

wind, and planar fit coordinate, respectively, with a relative difference
of 4%.

Figure 3.10 shows that the cross-wind momentum flux v′w′ in the
planar fit coordinate is usually not negligible. This is not a surprise for a
surface layer over rolling topography. That v′w′ is dependent upon wind
direction also suggests some tower interference with the measurement.
Forcing v′w′ to zero would require an additional rotation of the z − y
plane around the x axis by as much as 20◦.

To simulate the natural wind rotation scheme, we perform one ad-
ditional rotation of the velocity and flux cross products in the planar
fit coordinate by forcing the cross-wind momentum flux to zero. The
results are given in Figures 3.11 and 3.12. Much of the scatter in Fig-
ures 3.8 and 3.9 is eliminated by the additional rotation. The R2 value
is improved from 0.983 to 0.997 for CO2 flux and from 0.979 to 0.991
for momentum flux. Thus the primary difference between the two coor-
dinates is the third rotation of the natural wind system that forces v′w′
to zero. A rotation angle as large as 20◦ is clearly not physical. For-
tunately, the error caused by this rotation (rotation of the z − y plane
around the x axis) is much smaller than the error caused by sensor tilt
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Figure 3.10. Cross-wind momentum flux (v′w′, m2 s−2) in the planar fit coordinate
as a function of wind direction.

in the streamwise direction discussed in Section 4. This is because the
cross-wind scalar flux, v′c′, and momentum flux, v′w′, are much smaller
than their streamwise counterparts, u′c′ and u′w′.

7 Conclusions
To convert measurement of wind speed, eddy flux and scalar concen-

tration into estimates of the true surface-air exchange, we implicitly or
explicitly assimilate the measurement into mathematical statements of
the mass balance over a representative patch of the surface. The form of
these statements depends on the coordinate system in which it is written
and the coordinate system should be chosen so that the measurements
can be used optimally. A comparative analysis of some candidate coordi-
nate systems is performed, with a particular emphasis on the Cartesian
and physical streamline systems.

In our theoretical analysis, we make a distinction between the vector
basis, a local property of a coordinate system, and the overall coordinate
frame consisting of the vector basis and coordinate lines, a global prop-
erty of the flow that is determined by the flow field in three dimensions.
Usually only a single tower is available as measurement platform. Such
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Figure 3.11. Comparison of CO2 flux (mg m−2 s−1) in the natural wind coordinate
and the planar fit (PF) coordinate with one additional rotation that forces v′w′ to
zero. Solid line represents 1:1.

point measurements can only define the vector basis, and many com-
ponents that enter into the mass balance in complex flows are severely
under-sampled. A suitable coordinate frame for point measurements
must optimize our estimates of the surface-air exchange using the terms
we can measure, and maximize information for diagnostics purposes.

We analyze the strengths and weaknesses of three operational coor-
dinate systems for point measurements (instrument, natural wind, and
planar fit). Results of the analysis of a sample dataset shows that the
cumulative C flux is 4% higher in magnitude in the planar fit coordinate
than in the natural wind coordinate. The difference in the eddy fluxes in
the two coordinates results primarily from the third rotation performed
by the natural wind system that forces v′w′ to zero.

Coordinate tilt can occur in a number of ways. Besides the obvious
physical tilt of the anemometer relative to the local terrain surface, co-
ordinate tilt can easily result from post-field data analysis. Tilt error in
the eddy scalar flux w′c′ arises from contamination by the streamwise
flux u′c′ and the cross-wind flux v′c′, the former of which is much larger
in magnitude. That the scalar flux tilt error is usually small for small tilt
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Figure 3.12. As in Figure 3.11 but for the streamwise momentum flux (u′w′, m2 s−2).

angles does not negate the need for coordinate rotation. At sites where
wind direction exhibits a systematic diurnal pattern, the time integrated
C flux can suffer a systematic bias error on the order of 20 g C m−2 per
month for a 2◦ tilt in the streamwise direction.

8 Appendix A: The Natural Wind Coordinate
System

Let subscript 1 the denote velocity components and coordinate axes
in the instrument coordinate. To force the mean lateral and vertical
velocities to zero, we rotate through an angle η around the z1-axis and
an angle θ around the y1-axis. The instant velocity components after
the rotation, denoted with subscript 2, are

u2 = u1(CT)(CE) + v1(CT)(SE) + w1(ST)
v2 = v1(CE) − u1(SE) (3.14)

w2 = w1(CT) − u1(ST)(CE) − v1(ST)(SE)

where

(CE) = cos η ≡ u1/(u2
1 + v2

1)
1/2
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(SE) = sin η ≡ v1/(u2
1 + v2

1)
1/2

(CT) = cos θ ≡ (u2
1 + v2

1)
1/2/(u2

1 + v2
1 + w2

1)
1/2

(ST) = sin θ ≡ w1/(u2
1 + v2

1 + w2
1)

1/2

(3.15)

To force w′v′ to zero, we must rotate the intermediate z2-y2 plane
through an angle β. After this third rotation, we obtain

u = u2

v = v2(CB) + w2(SB) (3.16)
w = w2(CB) − v2(SB)

where

CB = cos β

SB = sin β

and

β =
1
2
tan−1

[
2v′2w′

2

(v′22 − w′2
2 )

]

By performing Reynolds decomposition and averaging, we can deter-
mine the velocity cross products and the flux vector in the natural coor-
dinate from those reported in the instrument coordinate. For example,
the vertical flux of scalar c is

w′c′ = w′
2c

′(CB) − v′2c′(SB) (3.17)

where

w′
2c

′ = w′
1c

′(CT) − u′
1c

′(ST)(CE) − v′1c′(ST)(SE)

v′2c′ = v′1c′(CE) − u′
1c

′(SE)

9 Appendix B: An Alternative Method for
Rotation into the Planar Fit Coordinate

In Wilczak et al. (2001), rotation into the planar fit coordinate is
accomplished by three successive steps according to pitch, roll and yaw
angles. The sequence of rotation cannot be mixed. Here in the spirit of
the base vector operation (Section 2), we outline an alternative approach,
related to Paw U et al.’s (2000) 2-D planar fit regression. Our approach
first determines the base vectors for the planar fit coordinate and then
projects the measured vector quantities (velocity, flux) to each of the
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base vectors. This scheme relies on the straightforward vector operation
and avoids the need for rotation angles and thus rotation sequence is
irrelevant.

Let the unit vector set {�i,�j,�k} define the desired right-handed orthog-
onal coordinate such that �i, �j and �k are parallel to its x, y and z axes,
respectively5. Thus, the mean vertical velocity in this coordinate is the
inner product of �k and the mean velocity vector �u

w = �k · �u. (3.18)

Substituting the component forms of the two vectors in the instrument
coordinate

�k = {k1, k2, k3}, �u = {u1, v1, w1 − b0},
into Equation 3.18 and solving for w1, we obtain

w1 = b0 + b1u1 + b2v2 + w/k3. (3.19)

The coefficients in Equation 3.19, b0 (instrument offset in the vertical
velocity), b1(= −k1/k3) and b2(= −k2/k3) are determined using a least
squares regression procedure on the assumption that the last term rep-
resents “random noise”. The components of �k can be determined once
b1 and b2 are known (see Matlab function unit vector k below).

Next we know that the y axis is perpendicular to �k by definition of an
orthogonal coordinate, and to �u so that after rotation the mean lateral
velocity vanishes. Thus

�j = �k × �u/� |�k × �u|. (3.20)

Also by definition of a right-handed orthogonal coordinate, we have

�i = �j × �k.

(Matlab function unit vector ij).
After all the three unit base vectors are known, the fluxes and veloc-

ity statistics can be projected easily onto the appropriate axes (Matlab
functions scalar flux and velocity stat). For example, the vertical scalar
flux is the inner product of the flux vector and vector �k

w′c′ = {u′
1c

′, v′1c′, w′
1c

′} · �k

5The vector set {�i,�j,�k} is the same as {�e1, �3, �2} in the main text. We change the notation
here for convenience of coding the routine.
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% determines unit vector k (parallel to new z-axis)

% input

% U1(:,1): mean u1 in instrument coordinate

% (:,2): mean v1 in instrument coordinate

% (:,3): mean w1 in instrument coordinate

% output

% k: unit vector parallel to new coordinate z axis

% b0: instrument offset in w1

%

function [k,b0]=unit vector k(U1)

% wilczak’s routine

u=(U1(:,1))’; v=(U1(:,2))’; w=(U1(:,3))’;

flen=length(u);

su=sum(u); sv=sum(v); sw=sum(w); suv=sum(u*v’); suw=sum(u*w’);

svw=sum(v*w’); su2=sum(u*u’); sv2=sum(v*v’);

H=[flen su sv; su su2 suv; sv suv sv2]; g=[sw suw svw]’;

x=H\g; b0=x(1); b1=x(2); b2=x(3);

%

% determine unit vector k

k(3)=1/(1+b1 ^ 2+b2 ^ 2);

k(1)=-b1*k(3);

k(2)=-b2*k(3);

return;

% determines unit vectors i, j (parallel to new coordinate x and y axes)

%

% input

% U1(1): (30-min) mean u1 in instrument coordinate

% (2): v1 in instrument coordinate

% (3): w1 in instrument coordinate

% k: unit vector parallel to the new coordinate z-axis

% output

% i, j: unit vector parallel to new coordinate x and y axes

%

function [i,j]=unit vector ij(U1,k)

j=cross(k,U1); j=j/(sum(j.*j))^0.5; i=cross(j,k);

return;

% determines scalar flux in new coordinate

%

% input

% u1c,v1c,w1c: scalar flux in instrument coordinate

% i, j, k: unit vectors parallel to the new coordinate x, y and

% z-axes output

% uc,vc,wc: scalar flux in new coordinate

%

function [uc,vc,wc]=scalar flux(u1c,v1c,w1c,i,j,k)

H=[u1c v1c w1c]; uc=sum(i.*H); vc=sum(j.*H); wc=sum(k.*H);

Xuhui Lee
Pencil
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return;

% determines velocity statistics in new coordinate

%input

% u: 3 by 3 matrix of cross product of the three velocity components

% (u(1,1) = u1^u1, u(1,2)=u1^v1, etc.) in instrument coordinate

% i, j, k: unit vectors parallel to the new coordinate x, y and

% z-axes output

% uu, vv, ww, uw, vw: statistics in new coordinate

%

function [uu,vv,ww,uw,vw]=velocity stat(u,i,j,k)

uu=i(1)^2*u(1,1)+i(2)^2*u(2,2)+i(3)^2*u(3,3)+...

2*(i(1)*i(2)*u(1,2)+i(1)*i(3)*u(1,3)+i(2)*i(3)*u(2,3));

vv=j(1)^2*u(1,1)+j(2)^2*u(2,2)+j(3)^2*u(3,3)+...

2*(j(1)*j(2)*u(1,2)+j(1)*j(3)*u(1,3)+j(2)*j(3)*u(2,3));

ww=k(1)^2*u(1,1)+k(2)^2*u(2,2)+k(3)^2*u(3,3)+...

2*(k(1)*k(2)*u(1,2)+k(1)*k(3)*u(1,3)+k(2)*k(3)*u(2,3));

uw=i(1)*k(1)*u(1,1)+i(2)*k(2)*u(2,2)+i(3)*k(3)*u(3,3)+...

(i(1)*k(2)+i(2)*k(1))*u(1,2)+(i(1)*k(3)+i(3)*k(1))*u(1,3)+...

(i(2)*k(3)+i(3)*k(2))*u(2,3);

vw=j(1)*k(1)*u(1,1)+j(2)*k(2)*u(2,2)+j(3)*k(3)*u(3,3)+...

(j(1)*k(2)+j(2)*k(1))*u(1,2)+(j(1)*k(3)+j(3)*k(1))*u(1,3)+...

(j(2)*k(3)+j(3)*k(2))*u(2,3);

return;
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