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A B S T R A C T

In this study, we investigated the intracity variation of humid heat in consideration of the con-
tributions from temperature and humidity. Data were collected from mobile surveys in a mid- 
latitude industrial city. We found greater humid heat in built-up neighborhoods than in rural 
neighborhoods. Land surface temperature exaggerates the disparity in heat exposure as opposed 
to air temperature, although their spatial variations bear a strong resemblance. Humid heat is 
more variable across the city at night than during the day. Its nighttime variation is stronger in 
the cold season than in the warm season. Weather exerts a strong influence on the spatial vari-
ation in humid heat. The greatest variation was observed in the conditions of weak wind, low 
solar radiation, and high soil moisture in the day, and in the weak-wind and dry-soil conditions at 
night. The daytime humid heat increases in the built-up neighborhoods because these neigh-
borhoods dissipate surface moist static energy less efficiently than the rural neighborhoods. The 
nighttime humid heat varies within the city mainly because the release of heat stored in the built- 
up neighborhoods is at a higher rate than the heat release from the rural soil.

1. Introduction

Urban population has grown rapidly in the past decades and is projected to reach 70 % of the world’s population by 2050 
(Economic, U. D. O., & Affairs, S., 2018). The well-being of urban residents is adversely affected by the urban heat island (UHI), the 
phenomenon characterized as elevated temperature in built-up land compared with the surrounding rural land. A large body of studies 
have examined the urban heat stress by comparing average conditions between urban (built-up) land and the adjacent rural land 
(Stewart, 2011). This two end-member comparison omits intra-city variations in characteristics like urban form and greenspace, and as 
a result the exposure of some urban residents to heat stress may be underestimated. It is imperative to examine the spatial variability of 
heat stress within a city in order to attain deeper insights into heat disparity across neighborhoods and to develop adaption strategies.

To date, studies on intra-city variations in heat stress are mostly based on the land surface temperature (LST) provided by satellite 
monitoring. Satellite LST is strongly dependent on urban land use type and morphological characteristics. Large LST differences have 
been observed between urban greenspaces (parks and gardens) and artificial surfaces without greenery (buildings, roads, and airports). 
Generally, LST decreases with increasing vegetation abundance due to cooling by plant transpiration. This temperature reduction 
depends on vegetation type, greenspace size, and greenspace shape (Yang et al., 2020b; Yu et al., 2017; Yu et al., 2018). In addition to 
vegetation, building morphology can also modify LST. In the daytime, neighborhoods with compact buildings may be cooler due to 
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greater shade provision than those with sparse buildings (Cilek and Cilek, 2021; Koc et al., 2018; Yu et al., 2019). On the other hand, 
greater building compactness may increase the nighttime LST because the street canyon traps more heat (Logan et al., 2020; Oke, 
1981; Oke, 1982).

The presence of LST hot and cold spots in a city has motivated the assessment of heat exposure disparity among different de-
mographic and socioeconomic groups. In the US, people of color and from low-income backgrounds experience higher LST than White 
and wealthier populations (Chakraborty et al., 2019; Chakraborty et al., 2023; Hsu et al., 2021). A limitation of these studies is that LST 
does not directly measure the heat stress experienced by human bodies. The LST can vary by more than 10 ◦C in a city (Daramola and 
Balogun, 2019; Kuang et al., 2015; Logan et al., 2020; Tran et al., 2017; Yang and Lee, 2022). However, intra-city variation in air 
temperature, which is a more appropriate measure of heat exposure, is much weaker. In one comparative study of the LST and air 
temperature, the LST difference between the coolest (an urban forest) and the warmest (a parking lot) land parcels along a street 
network was 11.3 ◦C (Yang and Lee, 2022). In comparison, the air temperature measured along the same network changed by only 1.5 
◦C. In another study, the spatial variation of the LST is greater than that of air temperature by a factor of 1.3 to 5.4 (Nichol and Wong, 
2008). Use of the LST alone as the heat stress metric may exaggerate the actual heat exposure disparity.

Besides air temperature, air humidity is another determinant of heat stress. Because the human skin is more capable of dissipating 
heat via evaporation in drier conditions, an urban dry island (UDI), that is, lower humidity in built-up land than in rural land, will 
improve thermal comfort, having an opposite effect to the UHI (Zhang et al., 2023). But the urban moisture land (UMI), with higher 
humidity in built-up land than in rural land, will aggravate human heat stress. So far, only a few observational studies on intra-city 
variations in humidity have been published (Jonsson, 2004; Noro et al., 2015; Waugh et al., 2023; Yang et al., 2020a). It is not 
known if humidity variations are positively or negatively correlated spatially with temperature variations. Air humidity will intensify 
heat stress in high temperature neighborhoods if the correlation is positive and will reduce heat stress if the correlation is negative.

In this study, we aim to investigate the intra-city variations of humid heat in consideration of the relative importance of tem-
perature and humidity changes. A smart sensor mounted on a passenger car was used to sample temperature and humidity variations. 
The mobile survey was repeated along a street network for 16 months. We used the wet-bulb temperature, calculated from the 
temperature and humidity data, as the measure of humid heat intensity. The data were used to address the following questions: (1) 
Which neighborhoods in the city are exposed to the greatest humid heat? (2) Do intracity variations in air temperature resemble 
variations in LST? (3) During which time of the day and season of the year does humid heat exhibit the greatest spatial variation? (4) 
What type of weather condition causes the greatest spatial variation in humid heat?

Fig. 1. Land cover map in the study area, New Haven, Connecticut, USA. Black lines indicate the sampling route, with arrows showing travel 
directions. White lines are road networks. The white ellipse is the rural reference. The red triangle indicates a NOAA weather station. Land cover 
data source: https://esa-worldcover.org/en. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

Y. Yang and X. Lee                                                                                                                                                                                                    Urban Climate 58 (2024) 102201 

2 

https://esa-worldcover.org/en


2. Materials and methods

2.1. Study area

Our study area is in the City of New Haven, Connecticut, the United States (Fig. 1). The city is located in the temperate Köppen 
climate zone (Köppen, 1900), with warm, humid summers and cold winters. The mean diurnal amplitude of temperature is about 
7.5 ◦C. The monthly mean air temperature ranges from 0.1 ◦C to 23.7 ◦C, with an annual mean of 11.8 ◦C. The mean relative humidity 
is 73 % and the mean vapor pressure is 12 hPa. The annual precipitation is about 1030 mm. The total population was 135,307 of which 
57.4 % are people of color based on the 2023 census data (https://data.census.gov/table?g=160XX00US0952000&y=2023). The city 
has a dense road network supporting busy transportation (thin white lines in Fig. 1). Its center is highly developed, and neighborhoods 
near its outskirt are densely vegetated lands.

2.2. Sensor and mobile measurement

Measurements were made with a smart temperature and humidity sensor (Smart-T) attached to the roof of a white passenger car 
(Supplementary Fig. 1). The approximate sampling height was 1.5 m above the ground. The Smart-T sensor is compact in size (85 mm 
tall), consisting of temperature and humidity sensing elements and a radiation shield. It uses the user’s smart phone as data logging and 
geolocating device. The sensor performance has been extensively tested (Cao et al., 2020; Yang et al., 2024). A brief summary is 
provided here for the reader’s convenience. A comparison between 30 sensor units and three commercial HOBO sensors (model 
MX2302A, Onset Computer Corporation, Bourne, Massachusetts, USA) was conducted in a well-ventilated room with stable tem-
perature and humidity. Results show that the sensor’s reproducibility or precision was 0.04 ◦C for temperature and 0.25 % for relative 
humidity. The mean bias (Smart-T minus HOBO) was − 0.10 ◦C for temperature and + 3.4 % for relative humidity. In an outdoor test 
for comparison between a Smart-T sensor and a commercial fast-responding temperature-humidity sensor (6 mm diameter, model I- 
Met XQ2, InterMet Systems Inc., Grand Rapids, Michigan), Smart-T captured spatial variations in temperature and humidity similar to 
those of the I-Met sensor. The I-Met sensor was considered free from radiation interference due to its small thermocouple, which was 
protected by a ventilated sunlight shield. Compared to the I-Met sensor, the temperature radiation error of the Smart-T in full sunlight 
was less than 0.05 ◦C when the sensor is in motion. The user can choose a logging interval from 1 s to 60 s. In this study, the logging 
interval was set to 1 s, corresponding to 20 m of spatial resolution at a maximum vehicle speed of 20 m s− 1.

Each trip started near a NOAA weather station (red triangle, Fig. 1), traversed a network of pre-selected streets (black arrows, 
Fig. 1), and ended at the weather station. This sampling route was selected to maximize the urban-rural contrast in the landscape. The 
sampled locations represent land parcels ranging from totally pervious land to fully paved land. The trip length is about 40 km. The 
observation period was from October 2022 to January 2024, typically with one to two observational days per week. On each 
observation day, one trip was made during the daytime and one trip during the nighttime, except on August 2, 2023, when four trips 
were made (start time 10:00, 14:00, 19:00, and 22:00 local time). On August 2, the sky was clear, and the solar radiation was strong 
(exceeding 900 W m− 2 at noon). There are a total of 109 day trips and 105 night trips. Most daytime trips (82 %) occurred between 11 
AM and 4 PM local time, each lasting about 2 h. Most nighttime trips (91 %) occurred between 9 PM to 12 AM local time, each lasting 
about 1.5 h. There are 103 trips in the warm season (May to October, monthly mean temperature above 10 ◦C) and 111 trips in the cold 
season (November to April).

In Supplementary Fig. 2, we performed a 1:1 comparison of the Smart-T measurements against the NOAA station observations. In 
this comparison, the Smart-T measurements were made near the station at the beginning and the end of each trip. Results show 
excellent agreement (R2 > 0.97, number of observations = 191).

2.3. Quantification of urban effects

We use the wet-bulb temperature (Tw) to represent the intensity of humid heat. The wet-bulb temperature Tw was calculated with 
the wet-bulb equation. 

Ta − Tw =

(
e*

w − ea
)

γ
(1) 

where Ta is air temperature, ea is vapor pressure, e*
w denotes the saturation vapor pressure at Tw, and γ is the psychrometric constant. 

This equation was solved numerically from the observed Ta and ea to obtain Tw at every sampling step.
The urban effects were quantified as spatial differences in air temperature (ΔTa), vapor pressure (Δea) and the wet-bulb temper-

ature (ΔTw) between a given location on the measurement route and a heavily wooded reference neighborhood (white eclipse in Fig. 1) 
which belongs to the local climate zone (LCZ) class A (Dense Trees), based on a global LCZ product (Demuzere et al., 2022). The vapor 
pressure difference is divided by the psychrometric constant γ to give the temperature dimension (◦C). Temporal trends in these 
variables during each measurement trip were removed using the stationary measurements at the NOAA weather station. We note that 
the spatial difference in the wet-bulb temperature (ΔTw) is a linear combination of the temperature and the humidity differences 
(Zhang et al., 2023), 
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ΔTw = w1ΔTa +w2
Δea

γ
(2) 

where w1and w2 are positive and dimensionless scaling factors given by 

w1 = w2 = 1
/(

1+
Δw

γ

)

(3) 

with Δw denoting the slope of the saturation vapor pressure at Tw. Eq. (2) is obtained by spatial differentiation of Eq. (1). Its accuracy is 
better than 0.017 ◦C (Zhang et al., 2023).

We analyzed the data collected during individual trips as well ensemble means for all-season daytime, all-season nighttime, warm 
season daytime, warm season nighttime, cold season daytime, and cold season nighttime. To produce these ensemble mean spatial 
patterns, we discretized the sampling route into 611 segments, with each segment represented by a rectangle grid of 50 m (along the 
traveling direction) by 90 m (in the lateral direction). The grid mean ΔTa, Δea and ΔTw were first calculated for each trip using the data 
collected at the points that fall within the grid boundary and were then averaged across trips to obtain the ensemble mean values. 
Sampling grids with fewer than 5 overlapping trips were excluded from the ensemble results to enhance temporal representativeness. 
Maps of trip overlaps are provided in Supplementary Fig. 3.

2.4. Supporting data

To investigate weather impacts on humid heat, we acquired meteorological variables for the study area from ERA5-Land hourly 
reanalysis data, including solar radiation, wind speed at the height of 10 m, and soil moisture (surface soil layer water volume 
fraction). We obtained the LST data using Landsat 8 and 9 level 2 products. We used Impervious Surface Fraction (IMP) to represent the 
spatial variations in the degree of development. The IMP data was provided by the National Land Cover Database. Another landscape 
indicator was Normalized Difference Vegetation Index (NDVI), derived separately for the warm season and the cold season from the 
Sentinel-2 L2A satellite images. The LST data is at the 100-m spatial resolution. The IMP data at the 30-m resolution and the NDVI data 
at the 10-m resolution were resampled to 100-m resolution to enclose the size of the ensemble sampling grids. All the satellite images 
were acquired in the clear-sky conditions.

To investigate the mechanisms underlying the spatial patterns of urban humid heat, we used an empirical method to quantify urban 
roughness considering buildings and trees as the primary roughness elements. According to a previous study by (Grimmond and Oke, 
1999) on urban roughness in global real cities, aerodynamic roughness can be modeled by the height and the plan areal fraction of 
roughness elements. Their relationship between z0 (roughness length), H (height), and λp (plan areal fraction) can be approximated by 
(Supplementary Fig. 4) 

z0 = 12.6098× λp
2.2 ×

(
1 − λp

5)×H (4) 

where λp is computed as the combined plan areal fraction of buildings (λpb) and trees (λpt), 

λp = λpb + λpt(1 − p) (5) 

Here we include porosity of tree foliage (p), set to be 0.2 in the warm season and 0.6 in the cold season (Grimmond and Oke, 1999). 
The roughness element height (H) is the average height of buildings (Hb) and trees (Ht), weighted by plan area and with porosity 
considered for the trees: 

H =
λpbHb + λpt(1 − p)Ht

λpb + λpt(1 − p)
(6) 

Here, λpb and Hb were obtained from the recently published GLAMOUR dataset at 100-m resolution (Li et al., 2024). Parameter λpt 

was computed, using the ESA WorldCover 2021 dataset, as the fraction of the original 10-m grids assigned the tree class within 100-m 
grids. Parameter Ht was derived from the Global Forest Canopy Height 2019 (Potapov et al., 2021) and aggregated from 30-m res-
olution to 100-m resolution. The computed z0 was at 100-m resolution and then extracted within 150 m from each mobile sampling 
grid.

In addition, we computed building volume from the GLAMOUR dataset and conducted the same aggregation using the 150-m 
radius.

To assess heat disparity among communities, we used median household income as a proxy for their socioeconomic backgrounds, 
and percent of people of color to represent ethnic backgrounds. These two variables are at the census tract level, and were acquired 
from American Community Survey 2020. Their values were extracted by the sampling grids and then bin-averaged to reduce the 
uncertainty that occurred at the tract boundaries.
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3. Results

3.1. All-season mean spatial variations

Built-up neighborhoods are generally warmer (Fig. 2a) and drier (Fig. 2b) than the rural reference during the day. For the five 
selected example neighborhoods (neighborhood 1–5 in Fig. 2b), they are all warmer than the rural reference, their ΔTa ranging from 
0.80 to 1.22 ◦C. In terms of the humidity difference, neighborhoods 1 and 2 experience large humidity reductions (1: Δea/γ = − 0.41 
◦C; 2: Δea/γ = − 0.45 ◦C). A weak humidity reduction is observed in neighborhood 3 (Δea/γ = − 0.16 ◦C). The other two neighborhoods 
show almost no change in humidity (4: Δea/γ = 0.01 ◦C; 5: Δea/γ = 0.00 ◦C).

When temperature and humidity changes are combined, neighborhoods 3–5 show higher wet-bulb temperature or humid heat 
intensity than the rural reference during the daytime (ΔTw from 0.47 ◦C to 0.61 ◦C; Fig. 2c). The Tw difference for neighborhoods 1 and 
2 is weaker, i.e., ΔTw = 0.25◦C and 0.17◦C, respectively, because the contributions from humidity change and from temperature 
change have opposite signs and therefore offset each other. This offsetting effect is evident as a negative correlation between the 
temperature change and the humidity change across the city (Fig. 3a). According to Eq. 2, the black dashed line with the slope of − 1:1 
in this figure indicates full compensation between temperature and humidity changes, that is, the temperature change is exactly 
canceled by the humidity change, leading to no change in the wet-bulb temperature. The parameter space above this line corresponds 
to positive ΔTw and the space below it negative ΔTw. The slope of linear regression of the actual data is − 0.69 (black solid line), 
showing that temperature change is only partially offset by humidity change, with the result being a net increase in humid heat relative 
to the rural reference neighborhood (Fig. 2c).

The nighttime spatial patterns differ from the daytime patterns in several respects. The city center (black circle in Fig. 4a) are both 
warmer (Fig. 4a) and more humid (Fig. 4b) than the rural reference neighborhood. In this area, the intensity of humid heat is enhanced 
by as much as 1.85 ◦C (Fig. 4c). The spatial correlation between ΔTa and Δea/γ is positive across the city with a positive regression 
slope of 0.30 (Fig. 3b). The majority of the datapoints lie above the full compensation line, or in other words, the increase in humid 
heat is contributed by increases in both temperature and humidity. Averaged across the whole street network, the nighttime ΔTw is 
nearly doubled (0.73◦C) in comparison to the daytime ΔTw (0.30◦C).

3.2. Comparison between air temperature and surface temperature

Fig. 5 is a comparison of the ensemble mean air temperature and the land surface temperature along the observational street 
network. The LST data is the ensemble average of 13 clear-sky Landsat 8 and Landsat 9 images spanning the entire measurement 
period. The acquisition time is approximately 10:30 local time. The LST variation (ΔLST) is presented as the LST of individual pixels 
minus the mean LST of the pixels in the rural reference neighborhood. Averaged throughout the year, LST is lower at the heavily 
wooded rural reference than in the built-up areas (Fig. 5b). Others LST cold spots correspond to urban parks, lawns, and waterbodies. A 
similar pattern is observed in the variations of air temperature (Fig. 5a). Supplementary Fig. 5 shows that air temperature is positively 
correlated with LST (p < 0.01), demonstrating resemblance between them. But the linear correlation was only 0.61, possibly due to the 
horizontal diffusion and advection in the atmosphere. The regression slope is 0.11, meaning that the variations in air temperature are 
only 11 % of the spatial variations in LST. In this city, LST exaggerates disparity of heat exposure by approximately ninefold.

Fig. 2. Ensemble maps for daytime variations in (a) temperature, (b) humidity, and (c) wet-bulb temperature. Black boxes in (b) indicate five 
example neighborhoods. Background is a natural color satellite map.
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3.3. Spatial variations in the warm season and the cold season

Compared to the rural reference neighborhood, the daytime temperature in built-up neighborhoods is increased more in the warm 
season (mean ΔTa = 1.09 ◦C; maximum ΔTa = 3.02 ◦C; Supplementary Fig. 6a) than in the cold season (mean ΔTa = 0.63 ◦C; maximum 
ΔTa = 1.28 ◦C; Supplementary Fig. 6d). The daytime humidity varies more spatially in the warm season (Δea/γ range from − 1.33 to 
1.77 ◦C) than in the cold season (Δea/γ range from − 0.54 to 0.10 ◦C). In the warm season, about half of the built-up grids in the daytime 
experienced decreased humidity and the rest increased humidity (Supplementary Fig. 6b). In the cold season, the daytime humidity in 
nearly all the built-up grids is lower than in the rural reference neighborhood (Supplementary Fig. 6e).

The nighttime temperature varies in similar ranges in the warm season (ΔTa range from − 0.42 to 2.71 ◦C; Supplementary Fig. 7a) 
and in the cold season (ΔTa range from − 0.42 to 2.51 ◦C; Supplementary Fig. 7d). On average, built-up neighborhoods are exposed to 
more increased temperature in the warm season (mean ΔTa = 1.54 ◦C) than in the cold season (mean ΔTa = 1.20 ◦C). The nighttime 
humidity is increased for the majority of built-up grids (92 %) in the warm season (mean Δea/γ = 0.43 ◦C; maximum Δea/γ = 1.81 ◦C; 
Supplementary Fig. 7b). In comparison, the cold-season shows attenuated variations in humidity (Δea/γ range from − 0.31 to 0.36 ◦C), 
with about 29 % grids showing negative Δea/γ (Supplementary Fig. 7e).

Fig. 3. Relationships between temperature change and humidity change in (a) daytime and (b) nighttime. Each data point represents a sampling 
grid. Color indicates impervious surface fraction. The black solid and dashed lines are best-fit function (with regression statistics shown) and the −
1:1 relationship, respectively.

Fig. 4. Same as Fig. 2 but for nighttime variations. Circle in (a) marks the city center.
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The positive daytime correlation and the negative nighttime correlation between Δea/γ and ΔTa are present in both the warm 
season and the cold season (Fig. 6). The change in the daytime wet-bulb temperature is similar between the warm season (mean ΔTw =

0.31 ◦C; maximum ΔTw = 1.26 ◦C; Supplementary Fig. 6c) and the cold season (mean ΔTw = 0.27 ◦C; maximum ΔTw = 1.08 ◦C; 

Fig. 5. Comparison of daytime variations in (a) air temperature and in (b) land surface temperature. The air temperature change is the all-season 
ensemble. The LST data is the ensemble average of 13 Landsat 8 and Landsat 9 images.

Fig. 6. Relationship between temperature and humidity variations a: warm season daytime; b: cold season daytime; c: warm season nighttime; d: 
cold season nighttime. Color indicates impervious surface fraction. The black solid and dashed lines are best-fit function (with regression statistics 
shown) and the − 1:1 relationship, respectively.
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Supplementary Fig. 6f). The enhancement in the nighttime Tw in built-up neighborhoods is less in the warm season (meanΔTw = 0.68 
◦C; maximum ΔTw = 1.47 ◦C; Supplementary Fig. 7c) than in the cold season (mean ΔTw = 0.76 ◦C; maximum ΔTw = 1.78 ◦C; 
Supplementary Fig. 7f).

3.4. Humid heat in highly built-up areas

Highly built-up areas are densely populated. We use IMP as a measure of the degree of development. In the following, we present 
the mean conditions of sampling grids with IMP greater than 90 %. The all-season mean Tw for these grids is increased by 0.38 ◦C in the 
day (Table 1). The increase in Tw at night (1.12 ◦C) is nearly three times greater than the increase in the day. This day-to-night contrast 
in these highly built-up grids is greater than for the entire city (Section 3.1). The stronger humid heat increase in the highly built-up 
grids is observed at night in the cold season (ΔTw = 1.20 ◦C; Table 1).

In all the temporal categories, temperature dominates over humidity in the intensification of humid heat in the highly built-up grids 
(Table 1). The temperature contribution (w1ΔTa) varies from 0.44 ◦C in daytime in the cold season to 1.08 ◦C at nighttime in the cold 
season. In comparison, the humidity contribution (w2Δea/γ) only varies between − 0.11 ◦C to 0.22n◦C.

The diurnal measurement on August 2, 2023 (Fig. 7) confirms the dominant role of temperature in increasing humid heat in the 
early afternoon (2 PM) and late at night (10 PM). The morning (10 AM) and evening transitions (7 PM) are exceptions. At 10 AM, 
contributions of temperature (w1ΔTa = 0.40 ◦C) and humidity (w2Δea/γ = − 0.39 ◦C) cancel each other, leading to almost no change in 
humid heat in the highly built-up neighborhoods. At 7 PM, these neighborhoods are exposed to large excess humid heat (ΔTw = 1.27 
◦C) owing to the positive contributions from both temperature (w1ΔTa = 0.77 ◦C) and humidity (w2Δea/γ = 0.54 ◦C).

3.5. Drivers of spatial variations in humid heat

Neighborhoods with high impervious surface fraction (IMP) tend to experience stronger humid heat. In the temperature versus 
humidity parameter space, sampling grids with greater IMP appear to deviate more in the positive direction from the full compensation 
line in both the warm and the cold season and the daytime and the nighttime. The same data presented as scatter plots reveals that ΔTw 
increases linearly with IMP, from near zero values for the rural reference neighborhood (IMP = 0 %) to the greatest magnitude for fully 
developed grids (IMP = 100 %; Fig. 8). This statistical correlation is significant (p < 0.01) in both the daytime and the nighttime, and 
in the warm season and the cold season. The sensitivity to IMP is much greater at night than during the day. The daytime Tw is 
increased by 0.43 ◦C in the warm season and 0.39 ◦C in the cold season, and the nighttime Tw is increased by 1.01 ◦C in the warm season 
and 1.14 ◦C in the cold season, for a 100 % increase in IMP. In these figures, we also use the mean ΔTw of sampling grids with IMP 
greater than 90 % to indicate the spatial variation (SV) of humid heat.

The correlation of ΔTw with NDVI is negative (Supplementary Fig. 8). This is expected as NDVI and IMP are negatively correlated 
across space. The Tw sensitivity to NDVI is − 0.39 ◦C (warm season) and − 0.76 ◦C (cold season) in the daytime and − 1.62 ◦C (warm 
season) and − 3.63 ◦C (cold season) in the nighttime per unit NDVI increase.

The humid heat intensity differs markedly among local climate zones, suggesting urban morphology to be a driver of its spatial 
variations. Among the sampling grids outside the rural reference neighborhood (LCZ A: Dense Trees), the daytime humid heat is most 
intense in LCZ 8 (Large Low-rise) and the least in LCZ 6 (Open Low-rise). At night, the lowest humid heat intensity occurs in LCZ 6 and 
the highest in LCZ 10 (Heavy Industry). The LCZs were derived from a global LCZ product (Demuzere et al., 2022). This product was 
chosen over other LCZ products like the CONUS LCZ map (Demuzere et al., 2020) and maps from the LCZ generator (Demuzere et al., 
2021) due to a high overall accuracy (~80 %) and a generalized model predictions based on most training samples.

3.6. Weather influence on spatial variations in humid heat

We consider three weather-related factors, solar radiation, soil moisture, and wind speed. For each weather factor, the trips are 
divided into two categories—high or low—depending on whether the factor during a particular trip is above or below the median value 
across all the trips. These median values are 373 W m− 2 (solar radiation), 0.32 (soil moisture) and 3.0 m s− 1 (wind speed). There are a 
total of 8 weather combinations or scenarios for daytime observations and four scenarios for nighttime observations. The number of 
trips in each combination ranges from 8 to 25. We then produced ensemble mean ΔTa, Δea/γ and ΔTw of the highly built-up neigh-
borhoods (81 sampling grids with IMP ≥ 90 %) for each scenario.

Table 1 
Mean change in wet-bulb temperature (ΔTw) in highly built-up grids (IMP >90 %), with the corresponding contributions from temperature (w1ΔTa) 
and humidity (w2Δea/γ). The scaling factors (w1 and w2) are given by Eq. 3, using the ensemble mean wet-bulb temperature at the rural reference 
grids.

Daytime Nighttime

ΔTw (
◦ C) w1ΔTa (

◦ C) w2Δea/γ (◦ C) ΔTw (
◦ C) w1ΔTa (

◦ C) w2Δea/γ (◦ C)

Warm Season 0.35 (±0.22) 0.46 (±0.09) − 0.09 (±0.18) 0.96 (±0.21) 0.78 (±0.15) 0.22 (±0.11)
Cold Season 0.34 (±0.22) 0.44 (±0.11) − 0.11 (±0.07) 1.20 (±0.43) 1.08 (±0.31) 0.10 (±0.07)

All 0.38 (±0.24) 0.46 (±0.09) − 0.12 (±0.11) 1.12 (±0.35) 0.97 (±0.23) 0.18 (±0.09)

Y. Yang and X. Lee                                                                                                                                                                                                    Urban Climate 58 (2024) 102201 

8 



Fig. 7. Diurnal variations of change in wet-bulb temperature (ΔTw) in highly built-up grids (IMP >90 %) on August 2, 2023. Contributions of 
temperature (w1ΔTa) and humidity (w2Δea/γ) are also shown. Error bars indicate ±1 standard deviation.

Fig. 8. Relationship between impervious surface fraction (IMP) and change in wet-bulb temperature (ΔTw): (a) daytime in the warm season; (b) 
daytime in the cold season; (c) nighttime in the warm season; and (d) nighttime in the cold season. Red lines display the best-fitting functions. Each 
datapoint represents one sampling grid. Spatial variation (SV) is quantified as the mean ΔTw of sampling grids with IMP greater than 90 %.
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During the day, these highly built-up grids are warmer (ΔTa > 0) and drier (Δea/γ < 0) than the heavily wooded reference 
neighborhood in all the weather scenarios (Fig. 9a and b). Their mean wet-bulb temperature is greater than that in the rural reference 
neighborhood (ΔTw > 0) for seven of the eight weather scenarios. The temperature increase and the humidity reduction are more 
pronounced in weak wind than in strong wind due to increasing strength of atmospheric mixing with increasing wind speed. The 
greatest temperature increase occurs when wind speed is low, and solar radiation and soil moisture are high (ΔTa = 1.82◦C; Fig. 9a). 
This weather scenario also corresponds to the greatest reduction in humidity (Δea/γ = − 0.64◦C; Fig. 9b). The largest increase in 
humid heat (ΔTw = 0.61◦C) is observed under the scenario of weak wind, low solar radiation and high soil moisture (Fig. 9c). 
Interestingly, under the scenario of strong wind, low solar radiation and low soil moisture, the Tw of these highly built-up 

Fig. 9. Influence of weather on daytime microclimate conditions of highly built-up grids (81 sampling grids with IMP ≥ 90 %): (a) temperature, (b) 
humidity, and (c) wet-bulb temperature. Color indicates raw value and symbol size indicates deviation from zero (absolute value).
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neighborhoods is slightly lower than the rural reference neighborhood (ΔTw = − 0.16 ◦C).
At night, the highly built-up grids are warmer (ΔTa > 0) and are more humid (Δea/γ > 0), and have a greater intensity of humid 

heat (ΔTw > 0) than the rural reference neighborhood for all the four weather scenarios (Fig. 10). Reductions in wind speed and in soil 
moisture increase both temperature and humidity in these grids (Fig. 10a and 10b). As a result, the greatest increase in humid heat 
occurs under the low wind speed and dry soil conditions (ΔTw = 1.50 ◦C).

4. Discussion

4.1. Comparison with published results on intra-city variations

In the present study, the daytime temperature averaged across all seasons varies spatially across the city by 2.1 ◦C (maximum minus 
minimum). The corresponding warm season and cold season ranges are 3.0 ◦C and 1.4 ◦C, respectively. These values fall within the 
range of intra-city variations in temperature (0.5 to 3.5 ◦C) reported by a body of earlier studies (Busato et al., 2014; Deosthali, 2000; 
Johnson et al., 2020; Jonsson, 2004; Saaroni et al., 2000; Shi and Zhang, 2022; Unger et al., 2001; Wang et al., 2017; Winkler et al., 
1981; Yan et al., 2014; Yang et al., 2020a). The all-season mean nighttime temperature variation in this study is 3.1 ◦C (maximum 
minus minimum), with the warm season range of 3.1 ◦C and the cold season range of 2.9 ◦C, again falling with the previously reported 
ranges (1.2 to 6.0 ◦C). These observed temperature variations are attributed to the elevated temperature in built-up neighborhoods 
relative to rural areas, conforming to the broad presence of the urban heat island phenomenon. Similar to the current study, the 
stronger temperature variation at night than in the day was observed in Padua, Italy (Busato et al., 2014), Tel Avia, Israel (Saaroni 
et al., 2000), Beijing, China (Wang et al., 2017; Yan et al., 2014), Nanjing, China (Yang et al., 2020a), and Guangzhou, China (Shi and 
Zhang, 2022). Observations spanning multiple seasons are in agreement with our findings that the intra-city variation in temperature is 
more pronounced in the warm seasons than in the cold season, both during the day (Wang et al., 2017; Yan et al., 2014) and at night 
(Unger et al., 2001; Winkler et al., 1981). An exception is Beijing, China, where the nighttime temperature variation is stronger in the 
cold season than in the warm season (Wang et al., 2017; Yan et al., 2014). This discrepancy could be explained by the greater release of 
anthropogenic heat in the winter than in summer, owing to space heating in this densely populated megacity. New Haven is a smaller 
city and is presumed to release a lower amount of anthropogenic heat than Beijing. The earlier studies suggest spatial variations in 
temperature are reduced with increase in wind speed and in cloudiness (Shi and Zhang, 2022; Unger et al., 2001). These patterns are 
also observed in the current study.

According to the data presented in a few studies on intra-city variations in humidity (Busato et al., 2014; Deosthali, 2000; Jonsson, 
2004; Shi and Zhang, 2022; Yang et al., 2020a), the daytime humidity spatial variation, quantified here as Δea/γ, fall between 1.4 and 
4.6 ◦C in the daytime and the between 0.8 and 8.9 ◦C at night. In the present study, the daytime humidity variation (maximum minus 
minimum) is 1.6 ◦C (all season), 3.1 ◦C (warm season) and 0.6 ◦C (cold season); these values are generally comparable to the results 
published in these studies. The nighttime variations in the present study are relatively low (maximum minus minimum; all-season: 1.3 
◦C; warm season: 2.4 ◦C; cold season: 0.8 ◦C). Generally, spatial variations in humidity are less predictable than in temperature. For 
example, in New Haven, air humidity can be either greater or lower in the built-up neighborhoods than the rural reference in the 
daytime in the warm season (Fig. 6a), but air temperature is almost always greater in the built-up neighborhoods. Averaged across all 
seasons, humidity in built-up neighborhoods in New Haven is decreased in the day, forming an urban dry island, and increased at 
night, forming an urban moist island (Table 1). These results are in line with the findings based on the annual observations in Nanjing, 
China (Yang et al., 2020a). Several studies show that the spatial variation in humidity is greater in the day than at night (Busato et al., 
2014; Deosthali, 2000; Yang et al., 2020a), and is greater in the warm season than in the cold season (Yang et al., 2020a); These 
patterns are reproduced in New Haven (Fig. 6). The weather influence on humidity variation has rarely been studied. In Guangzhou, 
China, Shi and Zhang (2022) reported less spatially variable humidity in cloudy conditions than in clear-sky conditions.

Several authors have reported observations on intra-city variations in both temperature and humidity during the warm season. 
Using their data, we find that the Tw spatial range, i.e., maximum Tw minus minimum Tw, to be 0.6 ◦C and 1.6 ◦C in Guangzhou (Shi and 
Zhang, 2022), 0.5 ◦C and 0.8 ◦C in Nanjing (Yang et al., 2020a), and 1.0 ◦C and 0.1 ◦C in Padua (Busato et al., 2014) in the daytime and 

Fig. 10. Same as Fig. 9 but for nighttime.
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at night, respectively. In comparison, the warm-season variation in Tw in New Haven is greater, at 1.4 ◦C in the daytime and 1.8 ◦C at 
night. The daytime variation in Guangzhou is associated with intensified humid heat for the built-up neighborhoods, owing to the 
positive contributions from the urban heat island and the urban moist island. The daytime humid heat is elevated in most built-up 
neighborhoods in New Haven (Supplementary Fig. 6c), and is elevated in only a few neighborhoods in Nanjing (Heavy Industry; 
Supplementary Fig. 9).

4.2. Mechanisms underlying the urban effects

The negative correlation between humidity and temperature spatial variations during the day (Fig. 6a and b) is indicative of 
evaporative effects. Evaporation reduces temperature and increases humidity. Because built-up neighborhoods have weaker evapo-
ration sources (greenery and soil) than the rural reference, they should experience higher temperatures or urban warming effect, and 
lower humidity or the urban drying effect. Evaporation is affected by water and energy availability. With ample soil water and strong 
solar radiation, the rural vegetation evaporates water at high rates, so relatively speaking, the warming effect and drying effect in the 
built-up neighborhoods are enhanced (Fig. 9a and b). If either soil water or energy is limited, the spatial variations in temperature and 
humidity are attenuated.

A surprising result is that the correlation between humidity and temperature spatial variations is positive at night (Fig. 6c and d). In 
other words, a stronger urban warming effect is accompanied by a greater urban humidification. It appears that the nighttime release 
of heat stored in built-up neighborhoods increases the near-surface air temperature and also allows more evaporation compared to the 
rural land where the rate of heat storage is low. Both the increases in temperature and humidity are amplified in the dry-soil conditions 
compared to the wet-soil conditions (Fig. 10a and b). This is because the rural soil has a lower heat storage rate when it is drier 
(Spronken-Smith and Oke, 1998).

Our results suggest that dynamic mixing may be a factor in controlling the spatial variation in Tw. The evidence for this can be seen 
in Supplementary Fig. 10, showing that the daytime Tw decreases with increasing roughness length (z0). In both the warm season and 
the cold season, Tw in the built-up neighborhoods show a prominent decreasing trend when z0 increases. With higher surface 
roughness, the near surface moist static energy can dissipate more efficiently to the upper boundary layer, resulting in reduced near- 
surface Tw (Zhang et al., 2023). The rural neighborhoods showed high roughness and low Tw in the cold season (Supplementary 
Fig. 10b and 10d). They were aerodynamically smoother in the warm season (black circle in Supplementary Fig. 10a), caused by lower 
foliage porosity and greater plan areal fraction. The low rural Tw in the warm season possibly resulted from other diabatic processes 
such as the ground shading effect of tree canopies. In both seasons, Large low-rise (LCZ 8) neighborhoods were exposed to the greatest 
daytime Tw in the city (Supplementary Fig. 10c and 10d); there, surface roughness was low due to a mixture of fully-paved ground in 
parking lots and large, flat commercial buildings.

The primary mechanism for the nighttime Tw spatial variation seems to be the release of heat storage or a source of diabatic heating 
(Zhang et al., 2023). The nighttime Tw is found to increase with increasing building volume across the city (Supplementary Fig. 11) and 
with decreasing soil moisture over time (Fig. 10c). Both high building volume and low soil moisture can be regarded as indicative of 
increasing heat storage in built-up neighborhoods relative to the rural soil.

4.3. Implication for environmental equity

The mobile measurements provide an opportunity to investigate the heat exposure of people from various socioeconomic back-
grounds and ethnic groups. For example, the wet-bulb temperature shows negative correlation with median household income during 
the day (Fig. 11a) and at night (Fig. 11b), indicating a disparity of heat risk among people at different socioeconomic statuses. Using 
the best-fit functions, we found the lowest income group (20,000–25,000 USD per year) experiences a greater humid heat than the 
highest income group (120,000–125,000 USD per year); the difference is 0.24 ◦C in the daytime and 0.45 ◦C at night. The positive 
correlation between ΔTw and percent of people of color (Fig. 11c and d) shows that people of color (Black, Hispanic, Asian, and 
American Indian) may be subject to more humid heat stress than the non-Hispanic White population. The disparity between non-White 
(percent of POC = 100 %) and White communities (percent of POC = 0 %) is relatively weak (0.08 ◦C) in the day but is observable at 
night (0.35 ◦C). These disparities also exist across seasons (Supplementary Fig. 12 and 13).

4.4. Implications for heat risk and adaptation strategies

A wet-bulb temperature of 27 ◦C has been widely regarded as a threshold beyond which human mortality increases significantly 
(Im et al., 2017; Zhang et al., 2023). Long-term records from the local weather station in New Haven (red triangle in Fig. 1) indicate six 
exposure days (daily maximum Tw > 27 ◦C) over the past decade. Compared to the station, built-up neighborhoods can increase 
daytime mean Tw by up to 0.80 ◦C in the warm season. By adding this increment to the historical station records, the number of 
exposure days rises to ten days per decade, underscoring the sensitivity of a statistical distribution’s tails to the mean change. Climate 
modeling results (Coffel et al., 2017) suggest that the mean daily maximum Tw in the coastal region of Northeast US should increase by 
approximately 1.5 ◦C from the last decade to the period 2060–2080 under the RCP8.5 scenario. By shifting the observed Tw probability 
distribution by the sum of this climate warming signal and the urban effect, the number of exposure days would increase to 70 days per 
decade in the built-up neighborhoods in New Haven.

Humans need to adapt to an increasingly warmer and more humid climate (Coffel et al., 2017; Willett et al., 2007). Based on the 
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findings of this study, local strategies to mitigate humid heat includes adjusting building morphology for promoting heat dissipation, 
optimizing building materials to reduce heat storage, and using reflective coatings to lower the absorption of radiative energy. Urban 
greenspaces can mitigate nighttime humid heat by reducing diabatic heating, but they may not be as effective in the daytime due to 
increased humidity from evaporation.

This study focuses on humid heat, or the combined effect of temperature and humidity on human thermal comfort. It omits other 
meteorological factors like wind condition and solar radiation, which can also affect human heat stress (Höppe, 1999; Jendritzky et al., 
2012). Another limitation is that wet-bulb temperature sets a strong assumption that the human body cools its skin only via evapo-
rating sweat (Sherwood and Huber, 2010). To approach the wet-bulb temperature, the body must be well-hydrated and in a well- 
ventilated environment. These conditions are not always fulfilled in practice. In this regard, the wet-bulb temperature may under-
estimate the true heat stress.

5. Conclusions

In this study, we investigated the intra-city variation in humid heat using data collected via a mobile smart sensor in a mid-latitude 
city. The main novelty lies in the use of the wet-bulb equation as a measure of humid heat to isolate the contributions from temperature 
and humidity. Additionally, the mobile measurements produced information on spatial variations in humid heat with a high spatial 
resolution and under all-weather conditions that have rarely been achieved in earlier research. The key findings are summarized as 
follows: 

(1) The spatial variation in humid heat was controlled by the degree of development; the greatest humid heat occurred in 
neighborhoods with the highest imperviousness and the lowest vegetation cover. These neighborhoods were home to com-
munities of low-income and people of color.

(2) There is a resemblance between the intra-city variations in air temperature and in land surface temperature, but land surface 
temperature exaggerated the disparity in heat exposure by approximately ninefold as opposed to air temperature.

(3) The spatial variation in humid heat was stronger at night than during the day. The nighttime variation in humid heat was 
greater in the cold season than in the warm season. The highly built-up neighborhoods in the city experienced the most elevated 
humid heat in the cold-season nights, with an average increase of 1.20 ◦C in wet-bulb temperature relative to the rural reference 
neighborhood.

Fig. 11. Relationship between all-season mean wet-bulb temperature change (ΔTw) and median household income (a and b) and percent of people 
of color (c and d). (a) and (c) are daytime results and (b) and (d) are for nighttime results. Circles are bin averages (bin size $5000 in a and b and 10 
% in c and d). Error bars are ±1 standard deviation. The back lines are best-fit functions derived from original data.
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(4) Weather exerted a strong influence on the spatial variation in humid heat. In the highly built-up neighborhoods, the largest 
increase in the daytime humid heat (relative to the rural reference) occurred under the conditions of weak wind, low solar 
radiation and high soil moisture. At night, these neighborhoods experienced the greatest humid heat in the weak-wind and dry- 
soil conditions.

(5) Intracity variations in humid heat were contributed more by temperature variations than by the humidity variations. In the 
daytime, temperature and humidity were negatively correlated across space, that is, high-temperature neighborhoods generally 
had lower air humidity. At night, the two variables were positively correlated: warmer neighborhoods were more humid.
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Supplementary Figure 1. Photos of (a) Smart-T sensor and (b) the sensor attached to the roof of 
a white passenger car. 

 

(a)                                                            (b) 

Supplementary Figure 2. Relationship between Smart-T and the NOAA station for (1) air 
temperature 𝑇! and (2) water vapor pressure 𝑒!. Measurements were made near the station at the 
beginning and the end of each trip. Each data point represents a one-minute average. Red solid 
lines show the linear regression functions. Black dashed lines indicate 1:1 relationship. 

 



 

Supplementary Figure 3. Number of trips in each ensemble sampling grid for (a) daytime in the 
warm season, (b) daytime in the cold season, (c) nighttime in the warm season, and (d) nighttime 
in the cold season. Trip overlap can be low due to occasional failure in data logging and road 
blockage. 

 

 

Supplementary Figure 4. The ratio of roughness length to height as a function of plan areal 
fraction. This figure is adapted from Figure 1a in Grimmond and Oke (1999). 

 



 

Supplementary Figure 5. Relationship between air temperature change and land surface 
temperature change across the city. Each data point represents the all-season average at one 
sampling grid. 

 



 

Supplementary Figure 6. Ensemble maps of daytime variations in air temperature (∆𝑇!), 
humidity (∆𝑒!/𝛾), and in wet-bulb temperature (∆𝑇") for the warm season (a, b, and c) and the 
cold season (d, e, and f). 

 



 

Supplementary Figure 7. Ensemble maps of nighttime variations in air temperature (∆𝑇!), 
humidity (∆𝑒!/𝛾), and wet-bulb temperature (∆𝑇") for the warm season (a, b, and c) and the cold 
season (d, e, and f). 

  



 

 

Supplementary Figure 8. Relationship between NDVI and wet-bulb temperature (∆𝑇") in (a) 
the daytime in the warm season, (b) the daytime in the cold season, (c) the nighttime in the warm 
season, and (d) the nighttime in the cold season. Red lines display the best-fitting functions. Each 
datapoint represents one sampling grid. 

 

 

 

 

 



 

 

Supplementary Figure 9. Wet-bulb temperature change (∆𝑇") and its temperature (𝑤#∆𝑇!) and 
humidity component (𝑤$∆𝑒!/𝛾) in difference local climate zones in Nanjing, China, in (a) 
daytime and (b) nighttime. Results are for the warm season. All the changes are relative to 
observations in LCZ A (Dense Trees). Data source: X. Yang et al. (2020). 

  



 

 

 

 

Supplementary Figure 10. Relationship between change in the daytime wet-bulb temperature 
(∆𝑇") and roughness length in the warm season (a and c) and the cold season (b and d). Each 
data point is an aggregate within 150-radius from an ensemble sampling grid. Color indicates 
impervious surface fraction in (a) and (b), and local climate zone in (c) and (d). The oval in (a) 
marks the built-up neighborhoods, and the circle indicates the rural neighborhoods. Black lines 
in (b) and (d) show the best-fit linear functions between ∆𝑇" and 𝑧%. Local climate zone data 
source: Demuzere et al., 2022; 

  



 

 

 

 

Supplementary Figure 11. Relationship between change in the nighttime wet-bulb temperature 
(∆𝑇") and building volume. Color indicates impervious surface fraction (IMP). Building volume 
was computed from the GLAMOUR dataset (Li et al., 2024) at 100-m resolution and aggregated 
within 150-radius from an ensemble sampling grid. 

 

 

 



 

Supplementary Figure 12. Relationship between wet-bulb temperature change (∆𝑇") and 
median household income (a and b) and percent of people of color (c and d) during the warm 
season. (a) and (c) are daytime results and (b) and (d) are nighttime results.  

 

  



 

 

Supplementary Figure 13. Relationship between wet-bulb temperature change (∆𝑇") and 
median household income (a and b) and percent of people of color (c and d) during the cold 
season. (a) and (c) are daytime results and (b) and (d) are nighttime results.  
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