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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• PM mass concentrations up to 100 m
above ground level were measured
using UAV.

• PM concentration increased with alti-
tude followed by a decline for flights
near the road.

• PM concentration decreased with alti-
tude for flights behind the tree canopy.

• Tree canopy reduced PM1, PM2.5 and
PM10 mass concentration by 29 %, 24 %
and 11 %.

• A RF model predicted the UAV/ground
PM concentration ratio with high
accuracy.
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A B S T R A C T

Measurement of PM near roadways has been of major interest due to high contributions of traffic to the overall
PM. This paper presents the results from a study that used an unmanned aerial vehicle (UAV, also known as
drones) platform to obtain measurements of PM and meteorological parameters up to 100 m above ground level
near an open highway, and to understand the influence of tree canopy on the PM distribution. The study involved
42 flights over a period of two days, conducted adjacent to a national highway in India. The overall mean profile
for flights conducted behind the tree canopy shows a decrease in PM mass concentrations with an increase in
altitude. However, for the near-road flights, the PM concentrations tend to increase with altitude, followed by a
gradual decline for a few flights. For the flights near the road, the results show that the mean values of PM1 and
PM2.5 mass concentrations at higher altitudes are 16% and 8% higher than the respective ground level con-
centrations. On the contrary, the mean PM10 mass concentrations at higher altitudes are 6% lower than that at
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the ground level. For the flights behind tree canopy, the results are different when compared to the flights near
the road. The mean mass concentrations for all 3 p.m., PM2.5 and PM10 particles at higher altitudes are 20%, 19%
and 21% lower than the respective ground level measurements. Also, the PM1, PM2.5 and PM10 mass concen-
trations for the flight behind tree canopy cover are 29 %, 24 % and 11 % lower than the near-road flights
respectively. The results also showed the concentrations behind the tree canopy remained low for the entire
altitude of ~100 m.

1. Introduction

Traffic emissions contribute majorly to the particulate matter (PM)
emissions in the environment (Das et al., 2015; Heydari et al., 2020;
Kalaiarasan et al., 2018). Understanding the dispersion and distribution
of PM emitted from traffic is crucial to assess their overall impact on
human health as well as on the environment. Past studies have focused
on evaluating the ground level distribution of particulate matter near
public roadways (Barros et al., 2013; Tiitta et al., 2002)

However, to better understand the dispersion of PM, it is equally
important to measure the PM concentrations in the vertical direction
(Chilinski et al., 2016; Peng et al., 2015; Tao et al., 2016; Villa et al.,
2016, 2017). Higher altitude measurements provide crucial information
to evaluate the effects of temperature-inversions (Largeron and Staquet,
2016; Trinh et al., 2019; Wallace et al., 2010), urban heat islands
(Fallmann et al., 2016; Sarrat et al., 2006) and influence of meteorology
on PM dispersion (Tao et al., 2016).

As of 2019, the Ministry of Road Transport and Highways in India
reported the total length of National Highways as 132,499 km. The rapid
urbanization and expanding network of these highways mean that a
significant portion of the population resides close to or in areas adjacent
to National Highways. Thus, it is important to evaluate the distribution
of PM near National Highways in India and evaluate the effectiveness of
roadside tree canopy in reducing the exposure to PM. Ground level
studies have shown that the tree canopy density affects the particulate
matter distribution in the street canyons (Tiwari et al., 2019; Wang
et al., 2020), however these studies do not provide information on dis-
tribution of PM above the tree height and overall effectiveness of the tree
to reduce the PM exposure.

Vertical PM concentration profile studies can be crucial for a better
estimate of the influence of roadside tree canopy cover (vegetation
cover) on PM dispersion as against the ground-based studies (Deshmukh
et al., 2018; Janhäll, 2015). Over the last couple of decades, researchers
have adopted several techniques to measure the pollutant concentra-
tions at higher altitudes. Some of the techniques include using multiple
instruments/sensors at different heights of multi-storey building/me-
teorological tower, use of remote sensing techniques, balloons and air-
crafts carrying PM measurement devices (Dubey et al., 2022c). With
advances in the field of electronics and aerodynamics, Unmanned Aerial
Vehicles (UAVs, also referred as drones) have been widely adopted in
the last few years for various applications including aerial surveys and
surveillance. A few studies have made use of UAVs as a platform to carry
miniature PM measurement devices/sensors (Alvarado et al., 2017;
Chiliński et al., 2018; Dubey et al., 2022b; Kuuluvainen et al., 2018;
Peng et al., 2015; Villa et al., 2016, 2017). The availability of standard
flight controllers in recent years has made it possible to automate flight
planning and control, easy vertical take-off and landing, and an overall
hassle-free operation without any or minimal requirement of manual
intervention (Villa et al., 2016). One of the first major studies that
deployed a UAV to measure the ultrafine particle number concentration
near a major road was in Brisbane, Australia (Villa et al., 2017). Other
past studies deployed UAV to measure the vertical as well as horizontal
distribution of pollutants near roadways in semi-urban areas (Dubey
et al., 2022b; Zheng et al., 2021).

Our study aimed to obtain a vertical distribution of particulate
matter (PM) mass concentrations along with meteorological parameters
up to a height of 100 m from the ground level using a UAV near a

National Highway in the eastern part of India. The research was
designed to assess the impact of tree canopy cover on the distribution of
particulate matter adjacent to an open highway, with UAV flights con-
ducted both near the highway and behind the tree canopy. Additionally,
we implemented a machine learning technique to predict PM mass
concentrations at higher altitudes based on ground-level measurements.
The hypothesis of the study is that higher altitude measurements would
provide a comprehensive understanding of PM dispersion patterns and
demonstrate the effectiveness of tree canopies in altering PM concen-
trations at various levels. This study is first of its kinds in its approach, to
author’s knowledge no major global study to date has deployed UAV-
mounted sensors to measure high-altitude PM concentrations near
highways and to examine the influence of roadside vegetation on PM
dispersion. As such, the findings from this investigation are expected to
be unique and provide novel insights into PM dispersion in traffic micro-
environments near an open highway.

2. Methodology

The PM measurements and meteorological parameters were made
using OPC N3 sensors from Alphasense and portable weather stations
Kestrel 5500, respectively (detailed description in section 2.2.1 and
2.2.3). Identical instruments were placed on the ground level as well as
on the UAV to get simultaneous measurements of PM concentrations and
meteorological parameters. This was used to compare the higher alti-
tude PM concentration against the ground level measurements. In
addition to the sensors, the ground station also included a reference
instrument, Grimm (model 1.108) (detailed description in section 2.2.2)
to calibrate the PM sensors. The study design and experimental field
campaign are explained further in section 2.3.

2.1. Measurement site and duration

The study was conducted adjacent to the National Highway 16 (NH
16), near Debra toll booth, West-Bengal, India, located at coordinates
22.39 ◦N, 87.52 ◦E. The roadway consisted of six lanes, three each on
either side of the divider (Fig. S1). The site was chosen with no ob-
structions nearby and having open space to allow safe take-off and
landing of the UAV. The tree canopy adjacent to the highway at the
study site was ~15–20 m high and ~20–25 m wide. The open-highway
site had no other major sources of PM except traffic. The traffic was
moderate to heavy and consisted mainly of heavy vehicles and light
passenger cars. The measurements were conducted for two days i.e. 11th
and 13th January 2022.

2.1.1. Traffic count
Vehicle count data was obtained from the toll booth that records

passing of any vehicle through the booth. The toll booth data catego-
rized the vehicles into 8 categories viz. LMV (Light Motor Vehicle);
TRUCK; LCV (Light Commercial Vehicle); MAV4AXE (Multi Axle
Vehicle with 4 axles); MAV3AXE (Multi Axle Vehicle with 3 axles); BUS;
MAV5AXE (Multi Axle Vehicle with 5 axles); MAV6AXE (Multi Axle
Vehicle with 6 axles). For the ease of data analysis, we reduced these
categories into one, Vehicle Count (VC; includes the sum of all the cat-
egories). The traffic count data used for the analysis is the sum of the
vehicles during the past ~30 min prior to the flight take-off.
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2.2. Instrumentation and sensor calibration

2.2.1. PM sensor
PM mass concentration was measured using OPC N3 sensors, man-

ufactured by Alphasense, UK. It is a lightweight (105 g), compact (75
mm × 60 mm x 65 mm) optical particle counter which can detect par-
ticles in 24 size ranges, from 0.38 to 40 μm. The working principle of the
sensor is based on the Mie scattering. The sensor uses an elliptical mirror
and a dual-element photo-detector counts the particles. The sensor
makes use of patented pumpless technology that allows the operation of
the sensor in high PM concentration environments with minimum dust
deposition and thus requires minimum maintenance (Alphasense,
2018). OPC N3 can be operated as a standalone PMmonitor, however in
that case the data stored is not time-stamped. To enable the data logging
along with the time stamps, it must be operated either by connecting it
to a laptop/computer and using it with the software provided by
Alphasense or by operating it using a microcontroller/microprocessor.
We used Raspberry Pi (model 3B) microprocessors to obtain and log the
time-stamped data from the sensors. Raspberry Pi comes with several
connectivity options such as SPI (Serial Peripheral Interface) pins and
USB (Universal Serial Bus) ports. It is compact in size (85.60 mm × 56.5
mm x 17 mm) and weighs about 50 g, which makes it ideal to be
mounted on a UAV alongside the PM sensor. The Raspberry was con-
nected to the sensor via a USB port using a SPI to USB converter (can be
procured from Alphasense). We used the python library provided by
(Hagan et al., 2018) and modified it to log data continuously in CSV
(Comma Separated Values) format (Dubey et al., 2022a). To ensure
quality control and keep the potential sources of error minimal, the two
OPC N3s used on the ground station and the UAV were newly procured.
OPC N3 is an upgraded version of the sensor OPC N2. Studies have tested
the performance of OPC N2 sensor against the standard instruments in
controlled laboratory environments (Sousan et al., 2016), uncontrolled
environments (Crilley et al., 2017; Dubey et al., 2022a) as well as high
altitude environments simulated in the laboratory (Bezantakos et al.,
2018). The results from these studies have shown that the sensor per-
forms fairly accurately. The studies recommend on-site calibration of the
sensor. Details of the sensor calibration for the present study are dis-
cussed in section 2.2.5.

2.2.2. Reference instrument
An aerosol spectrometer (Grimm, model 1.108), (hereon referred as

Grimm) was used as a standard PM measuring device to calibrate the
sensors. The instrument is widely regarded as one of the gold standards
amongst the many optical principle-based instruments. The PM mea-
surements from the Grimm have been found to be highly accurate in
comparison with the FEM (Federal Equivalent Methods) (Burkart et al.,
2010; Cheng, 2008). The proprietary software provided by Grimm was
used to download the data and control the data logging parameters such
as time interval etc.

2.2.3. Meteorological parameter measurements
The meteorological parameter measurements were made using a

portable weather station manufactured by Nielsen-Kellerman (Model:
Kestrel 5500), USA (Kestrel, 2019). The instrument is hereon referred as
kestrel. Two identical kestrels were deployed on the ground as well as
UAV to measure the meteorological parameters at a minimum logging
interval of 2 s. Its compact size (6.5 cm× 7.5 cm x 22 cm), robust design
and light weight (121 g) make it highly compatible for mounting on
UAV. The proprietary software provided by Kestrel was used to down-
load the data by connecting it to a laptop/computer. The portable
weather station was also used to obtain the height of the UAV during the
flight as it provides the altitude data by converting the barometric
pressure into altitude.

2.2.4. UAV specifications and modifications
The UAV used in this study was a custom-made quadcopter that

offers a maximum payload capacity of 700 g. The UAV weighs a total 2
kg excluding the sensors (OPC N3) and weather station (Kestrel 5500).
The flight time of the UAV is around 12 min without any payload. The
UAV measures 450 mm diagonally and has carbon fiber propellers of
254 mm in size. The multi rotor motors powering the propellers are
manufactured by T-motors (580 kV) with an ESC (Electronic Speed
Controller) of 40 A (Ampere) supply. The UAV is powered by a 5200
mAh (milliampere-hour) LiPo (lithium polymer), 11.1 V, 3 cell battery.
The autopilot used to operate and control the UAV was Pixhawk Q V5.
All the UAV flights were planned and controlled using mission planner
software from a laptop near the ground station. The software tracks the
UAV status, battery health, altitude, latitude and longitude in real-time
during the flight. Automated flights not only assisted in ease of operation
but also ensured that all the flights followed the same path and the
measurements were made at a constant uniform speed, thus avoiding
any potential sources of human error. The UAV platformwas customized
to accommodate the PM sensor module and portable weather monitor to
measure the PM mass concentrations as well as meteorological param-
eters. The PM sensor module was powered by the UAV batteries. Fig. 1
gives details of the sensor assembly along with the kestrel weather
monitor. The sensors and micro-processor were placed at the center to
achieve stable flights. Further, to avoid any measurement errors and to
achieve PMmeasurements with minimal influence of the rotary wings of
the UAV, a conductive sampling tube was attached to the inlet of the PM
sensor with its other end ~50 cm above the rotary wings of the UAV. The
rationale behind this is based on the CFD studies conducted earlier
which showed that there is no influence of rotary wings on PM con-
centration beyond 50 cm above it (Alvarado et al., 2017). Also, based on
our findings from the previous work, the conductive tube does not have
a significant effect on the performance of the sensors (Dubey et al.,
2022a).

2.2.5. Sensor calibration
The OPC N3 sensor used in this study is an updated version of OPC

N2. Several past studies that have evaluated OPC N2 with the reference
instrument have recommended that the sensor must be calibrated on-
site with respect to a reference instrument (Crilley et al., 2017; Sousan
et al., 2016). The findings from these studies have shown good perfor-
mance of the sensors (Bezantakos et al., 2018). The US EPA has put forth
criteria to evaluate the performance of low-cost sensors for supple-
mental and informational monitoring (US EPA, 2021). US EPA recom-
mends the calibration of the sensors based on collocated measurements
of the sensors with against a reference instrument. Our previous study,
we extensively tested the performance of OPC-N2 and PM nova PM

Fig. 1. UAV setup with sensor module and portable weather station.
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sensors in different environments and conditions, including in traffic
micro-environment. Based on the results of our previous work, OPC
N2/N3 was found to perform better and also measures PM1, PM2.5 and
PM10 concentrations simultaneously. However, results from other pre-
vious studies, including our previous work (Crilley et al., 2017; Dubey
et al., 2022a; Sousan et al., 2016) suggested that the sensors must be
calibrated via collocated measurements on-site before actual data
collection. To achieve this, were measured the PM concentrations by
operating OPC N3 sensors with Grimm as reference instrument for
~500 min at the site prior to actual measurements. The data from the
measurement was used to evaluate the sensor performance using linear
regression against reference instrument. The criteria set by the US EPA is
a slope of 1 ± 0.3, a y-intercept of 0 ± 5 μg m− 3, R2 ≥ 0.7 and RMSE
values < 7 μg m− 3 for a linear regression between the sensor (as
dependent variable) and reference instrument (as independent variable)
(US EPA, 2021). The results of the sensor performance evaluation are
shown in Table 1. The results show that the sensor performance was
fairly accurate with high R2 values. The sensors meet the US EPA per-
formance criteria for most of the parameters. Further, the correction
factors were obtained to express the PM concentrations measured by the
sensors in terms of Grimm equivalent. These correction factors are
shown in Fig. S2.

2.3. Description of field experimental plan

For safety, all the flights were operated manually for the first 5 m
during the take-off and then switched into auto mode. The take-off point
for all the near-road flights was at a distance of ~5 m from the edge of
the highway. The UAV flights paths were vertical and up to a height of
100 m above the take off point. The ascent rate of the flight was
controlled by the autopilot at a constant rate of 1 ms− 1. For the flights
behind the tree canopy, the take-off point was at a distance of ~35 m
from the edge of the highway. To understand the influence of tree
canopy on PM distribution, flights behind the tree canopy were con-
ducted immediately after the near-road flights. It is assumed that the
overall distribution of the PM mass concentration did not change
significantly during the time between behind the tree canopy flights and
near-road flights. The ground level instruments were set at a perpen-
dicular distance of ~5 m from the edge of the highway for near the road
as well as behind the tree canopy flights. Fig. 2 shows a schematic
representation of the experimental setup along with the flight path. The
image was taken from another UAV which was intended to take pictures
of the study. A total of 42 flights were conducted during two days of the
experimental campaign. All the flight measurements were made be-
tween 10 a.m. and 5 p.m. IST (Indian Standard Time). Before the start of
the experimental campaign, it was ascertained that all the instruments’
and sensors’ clocks are in synchronization.

The ground level setup included an OPC N3 sensor module, Grimm
and kestrel 5500 to measure PM concentrations and meteorological
parameters. An identical set of OPC N3 sensor module and kestrel 5500
were mounted on the UAV to measure the PM concentrations as well as
meteorological parameters in the vertical direction. Data from the
ground level OPC N3 sensor and the reference instrument Grimm was
used to calibrate the data from the sensors. Corrections were applied to
the data obtained from the sensors to get PM concentrations equivalent

to that of Grimm (Details in section 2.2.5).

2.4. Collected data analysis methods

The altitude data for the flights was obtained from the altitude sensor
in Kestrel 5500. The minimum time interval for data logging in the
Kestrel 5500 is 2 s. The data logging from the two OPC N3s was set at an
interval of 2 s and synchronized using the time-stamps. As mentioned
earlier, the ascent speed of the UAV was set to 1 m s− 1. Therefore, a 100
m high flight took ~100 s for the ascent, which led to ~50 data points
per flight. The outliers were identified as the values beyond the 1.5 x IQR
(Interquartile Range) and were replaced with median values (Basu and
Meckesheimer, 2007; Rousseeuw, 1991). Out of the 42 flights conducted
over the span of two days, data from 22 flights was considered for
analysis and the remaining 20 flights were discarded due to missing data
from one or more instruments/sensors. For all the analysis, only the data
between the altitudes 10 and 90 m from the UAV was considered. A
rolling mean of 10 m interval was used for the analysis.

2.4.1. Random forest model
One of the main aims of the study was to develop a model to predict

the PM mass concentrations at higher altitude based on the measure-
ment of the ground level PM concentration and meteorological param-
eters. Random Forest (RF) is a meta-estimator that calculates a number
of decision trees and performs analysis on the subsample of input data
(Liaw and Wiener, 2002). A random forest model was developed to es-
timate the “UAV/Ground ratio” (ratio of mean values of higher altitude
vs ground level PM mass concentrations). Ground level RH, wind speed,
temperature and vehicle count and altitude were considered as inde-
pendent variables to predict UAV/Ground ratio. Fig. 3 gives a schematic
representation of the RF model parameters assigned along with the
variables used. A rolling means of the UAV/Ground ratio values at 10 m
intervals were considered for the model development and analysis. The
depth of the tree for the RF model was adjusted to 7 with 100000
n_estimators. Time of the flight i.e. morning (M), afternoon (A) and
evening (E) were considered as input to the RF model. However, like any
other machine learning model, RF too requires data in the form of
continuous variables for the regression model. A commonly used tech-
nique to convert the categorical data into continuous variables is
One-Hot encoding (OHE). Binary numbers are used to convert the cat-
egorical data into continuous variables. For example, in our model the
categorical variables are M, A, and E. Then, each unique category value
is assigned with a binary number - M is “100”, A - “010”, E − “001”
(Stepanov et al., 2020). The dataset from both the days was used to
develop the model with 90 percent of data being used as training data
and the rest of the 10 percent data used to evaluate the model
performance.

3. Results and discussion

3.1. Meteorological conditions

Table 2 gives the descriptive statistics about the meteorological data
obtained for ground level and the higher altitude measurements made
by the UAV for all the flights. P-test results showed the mean values for
higher altitude temperature (mean - Near road flights: 22.63 ◦C; Behind
tree canopy flights: 21.78 ◦C) obtained by the UAV measurements were
statistically significantly lower than ground level temperature (mean -
Near road flights: 23.39 ◦C; Behind tree canopy flights: 22.98 ◦C). On the
contrary, the mean value of relative humidity at higher altitude (mean:
77.21 %) was statistically higher than that at the ground level (mean:
75.26 %) for the near road flights. However, for the flights behind the
tree canopy, the relative humidity values at higher altitudes (mean:
78.24 %) were found to be statistically indifferent from the ground-level
mean values (mean: 77.45 %) based on the P-test results. The ground
level wind speed during the flights (inclusive of near road and behind

Table 1
Evaluation of the OPC N3 for PM1 and PM2.5 and PM10 mass concentration with
reference to Grimm.

PM size Sensor evaluation parameters

Slope Intercept R2 RMSE (μg m− 3)

PM1 0.94a − 22.27 0.943a 4.12a

PM2.5 1.46 − 54.52 0.922a 13.53
PM10 1.03a − 15.05 0.57 46.75

a meets the US EPA criteria.
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Fig. 2. Schematic representation of the experimental setup and design at the site (Not to scale).

Fig. 3. Schematic diagram representing the Random Forest model parameters and variables.

Table 2
Descriptive statistics for the meteorological parameters for all the flights conducted over two days.

Parameters Near Road Behind Tree Canopy

Count (n) Mean ± std min max Count (n) Mean ± std min max

Temperature ground (oC) 547 23.39 ± 3.10 19.40 29.00 578 22.98 ± 2.48 19.70 27.30
RH Ground (%) 547 77.21 ± 14.44 56.70 100.00 578 77.54 ± 11.29 61.50 100.00
Wind Speed ground (m s− 1) 547 0.89 ± 0.64 0.00 2.60 578 0.81 ± 0.53 0.00 2.30
Temperature UAV (oC) 547 22.63 ± 3.26 17.60 28.30 578 21.78 ± 2.53 18.40 26.80
RH UAV(%) 547 75.26 ± 11.11 56.50 95.10 578 78.24 ± 9.56 59.80 95.70

Note- The ground level temperature and RH varied significantly from its corresponding values at higher altitudes (p ≤ 0.05).
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tree canopy flights) was in the range 0–2.6 m s− 1, with an overall mean
value of 0.84 m s− 1, which shows that all the flights were conducted in
the gentle breeze environment.

Fig. 4 shows the variation of temperature and RH with respect to
altitude for all 22 flights. The flight number shows the order in which the
flights were conducted. Temperature decreased with an increase in
altitude for most of the flights, whereas the RH values were found to be
increasing with an increase in altitude. The windrose diagrams show
that the wind flow was from the north direction at the ground level for

most of the study duration. Therefore, all flights were conducted in the
downwind direction of the highway (Figs. 2 and 4).

3.2. Vehicle count

Fig. S3 shows the variation of the sum of vehicle count ~30min prior
to the flight take-off for all the 22 flights. The vehicle count varied in the
range of 149–246 vehicles (mean: 183 vehicles). For most of the study
duration, the vehicle numbers increased as the day progressed. The

Fig. 4. Variation of temperature (a, d) and RH (b, e) with altitude, and windrose (c, f) at the ground level
Note- (1) The X-axis scale is different for all the plots. (2) Suffix after the flight number denotes the time of the flight (M- Morning (Before 12pm), A-Afternoon(12-4
pm), E-Evening (After 4pm)), the letters NR represent the Near Road flights and BT represents flights Behind Tree canopy.
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vehicle count was obtained from the database of the toll plaza.

3.3. PM mass concentration variation with altitude

Table 3 gives the descriptive statistics for PM mass concentration
measurements at ground level and at higher altitudes for near the road
and behind tree canopy flights. The p-test, or p-value test, is a statistical
method used to determine the significance of results obtained from data
analysis. If the p-value is less than 0.05 (p < 0.05), it suggests that the
observed results are statistically significant, meaning there is less than a
5% probability that these results occurred by chance under the null
hypothesis. In our study, we employed the p-value test to compare
ground-level and higher altitude PM concentrations, aiming to deter-
mine if their differences were statistically significant. For the near road
flights, the p-test results show that the PM1 (mean: 103.19 μg m− 3) and
PM2.5 (mean: 116.11 μg m− 3) mass concentrations at higher altitudes
are significantly higher (p ≤ 0.05) than the ground level concentrations
(mean: 88.89 μg m− 3 and 107.37 μg m− 3 respectively). On the contrary,
PM10 (mean: 164.54 μg m− 3) and PM2.5 mass concentrations at ground
level is significantly higher (p ≤ 0.05) than the concentrations at higher
altitudes (mean: 155.17 μg m− 3). This suggests that PM10 particles near
the road settled close to the ground level and did not rise up to higher
altitude during the study duration.

For the behind tree canopy flights, the results are different when
compared to the near-road flights. The mass concentrations for all 3 p.
m.1 (mean: 73.81 μg m− 3), PM2.5 (mean: 88.07 μg m− 3) and PM10
(mean: 137.38 μg m− 3) particles at higher altitudes were significantly
lower (p ≤ 0.05) than that at the ground level measurements (mean:
91.56 μg m− 3, 110.76 μg m− 3 and 173.37 μg m− 3 respectively).

The variation of PM mass concentration with respect to altitude for
individual flights on both the days is shown in Fig. 5. The mean PM
profile for near road and behind the tree canopy are shown separately.
The flight numbers denote the order in which the flights were conducted
and the letter after the flight number denotes the time of the flight (M-
Morning (before 12 p.m.), A-Afternoon (12-4 pm), E-Evening (after 4 p.
m.)).

The overall mean profile of the near-road flights shows an increase in
the PM mass concentrations with the altitude for day 1 flights for all
three particle sizes. For the day 2 flights near the road, the mean profile
trend shows the mass concentrations increase with altitude followed by
a gradual decline over 80 m. The onset of evening results in the for-
mation of inversion, which leads to the trapping of the pollutants near
the ground level, at a height of 50–60m, for a few of the evening and late
afternoon flights on the second day of the measurements. Beyond it,
from a height of ~80m, a decline in PMmass concentrations is observed.
Studies have shown that PM concentrations usually decrease with the
horizontal distance from the highway (Karner et al., 2010; Zhu et al.,
2002). The results from our study have shown the distribution of PM in
vertical direction near the road and behind the tree canopy.

Temperature was observed to decrease with altitude (Fig. 4) indi-
cating effective vertical mixing. The PM concentration behind the tree
canopy cover also decreased in a manner similar to the temperature
profile. However, the PM concentration variations for flights near the
road did not correlate strongly with the temperature profiles. The in-
fluence of ground-level meteorology on these observations is further
discussed in Section 3.6. The overall mean profile for flights conducted
behind the tree canopy shows a decrease in PM mass concentrations
with an increase in altitude for both the days (Figs. 5 and 6). Section 3.4
provides a detailed discussion on the comparison between the near road
and behind tree canopy flights.

3.4. Effect of tree canopy cover on PM distribution

The P-test results showed that the mean PM mass concentrations for
PM1, PM2.5 and PM10 for behind tree canopy flights were significantly (p
< 0.05) lower than the ones near the road (Table 3 and Fig. 6). The
figure also shows the ground level PM mass concentrations from the
measurements that were conducted at ~5 m from the edge of the
highway for both, near the road and behind the tree canopy flights. The
PM1, PM2.5, and PM10 mass concentrations for the flight behind tree
canopy cover were 29 %, 24 %, and 11 % lower than the near road
flights respectively (Table 3). The P-test results show that the tree can-
opy leads to a significant decrease (p < 0.05) in the PM mass concen-
trations. The findings from this study are similar to past studies that
showed that the green infrastructure adjacent to the road leads to a
reduction in PM1, PM2.5, and PM10 mass concentrations by 31 %, 17 %,
and 15 % respectively (Abhijith and Kumar, 2019). However, the
UAV-basedmeasurements from the present study show that the PMmass
concentrations remain low even up to ~100 m above the ground level
for the flights behind the tree canopy cover in comparison to the near
road flights (Fig. 6). The reduction in PM mass concentrations due to
green infrastructure/canopy cover occurs through complex mechanisms
that involve pollutant deposition and redistribution (Tiwari et al., 2019;
Wang et al., 2020)

The results from our previous study (Dubey et al., 2022b) for the
horizontal flights near an urban road without any trees had shown that
the PM1 and PM2.5 mass concentrations were 7 % and 11 % lower at a
distance of 90 m than that at a 10 m distance from the edge of the urban
road. PM10 did not show a significant (p < 0.05) difference in the mass
concentrations. Even though the take-off distance for the behind tree
canopy flights (~35 m) in the present study was less than half the dis-
tance of the horizontal flights (90 m) in the previous urban road study,
the reduction in PM1 and PM2.5 mass concentrations are higher. This
suggests that the tree canopy cover, adjacent to the roads, leads to a
significant reduction in the PM concentration level behind the canopy.
The results from the UAV-based measurements from the present study
show that the tree canopy cover led to a reduction in the PM mass
concentration not only close to the ground but also up to several meters

Table 3
Descriptive statistics of PM mass concentrations.

Parameters Near Road Behind Tree Canopy

Count (n) Mean ± std min max Count (n) Mean ± std min max

Altitude (m) 547 48.38 ± 27.50 0.00 100.00 578 48.46 ± 28.28 0.00 99.00
PM1 ground (μg m− 3) 547 88.89 ± 11.13a 59.43 111.82 578 91.56 ± 13.36 aa 67.77 124.34
PM2.5 ground (μg m− 3) 547 107.37 ± 29.12b 63.47 156.15 578 110.76 ± 24.39 bb 77.85 178.29
PM10 ground (μg m− 3) 547 164.54 ± 29.12c 100.65 267.17 578 173.37 ± 31.06c 126.49 268.01
PM1 UAV (μg m− 3) 547 103.19 ± 21.05a 38.21 176.77 578 73.81 ± 9.39 aa 52.14 107.22
PM2.5 UAV (μg m− 3) 547 116.11 ± 31.38b 50.50 220.60 578 88.07 ± 16.73 bb 63.62 141.86
PM10 UAV (μg m− 3) 547 155.17 ± 21.15c 105.78 242.31 578 137.38 ± 13.18c 115.50 192.16

aPM1 mass concentrations at ground level were significantly lower than that at UAV (p ≤ 0.05).
aaPM1 mass concentrations at ground level were significantly higher than that at UAV (p ≤ 0.05).
bPM2.5 mass concentrations at ground level were significantly lower than that at UAV (p ≤ 0.05).
bbPM2.5 mass concentrations at ground level were significantly lower than that at UAV (p ≤ 0.05.
cPM10 mass concentrations at ground level were significantly higher than that at UAV (p ≤ 0.05).
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above the ground level. This is a major finding from this study and it
shows that the UAV-based measurements of PM can provide crucial
information leading to a better understanding of PM distribution in
micro-environments.

3.5. Comparison of open highway and urban road PM distribution

This section discusses the differences in the vertical distribution of
PM from our previous study near the urban road (Dubey et al., 2022b)
and the present study near the open highway (near road flights only) and

highlights the major inferences from both the studies. UAV/Ground
ratio (ratio of mean values of higher altitude vs ground level PM mass
concentrations) of PM1, PM2.5 and PM10 for the near road scenario in
case of the open highway are 1.16, 1.08 and 0.94, respectively (Table 3).
These ratios are significantly higher for the open highway than urban
roadway (0.93, 0.82 and 0.53 for PM1, PM2.5 and PM10 respectively
(Dubey et al., 2022b)). All the ratios for our previous study near the
urban road are <1 which suggests the ground level concentration is
higher than the higher altitude concentrations. The possible explanation
for this can be that the street canyons tend to restrict the PM dispersion

Fig. 5. PM mass concentration variation with altitude: (a) Day 1 (b) Day 2.
Note: The X-axis scale is different for the plots. The letter after the flight number denotes the time of the flight (M- Morning (Before 12pm), A-Afternoon (12-4 pm), E-
Evening (After 4pm)).
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near urban roadways and ultimately lead to higher concentrations near
the ground level (Chan and Kwok, 2000; Lv et al., 2021; Taseiko et al.,
2009; Wang et al., 2021). In an urban street canyon, however, the
exposure at higher altitudes is lower than the ground-level exposure
levels.

The UAV/Ground ratio for the flights behind the tree canopy was
0.80, 0.81 and 0.79 (Table 3). In summary, the major inferences that can
be drawn based on the inter-comparison of the two studies shows that
that tree canopy cover greatly reduces PM exposure. Street canyons in
the cities confine PM dispersion near ground level, suggesting staying on

higher floors is advisable in an urban environment. Conversely, PM
distribution is uniform on open highways due to unrestricted airflow.
Fig. 7 shows a schematic representation of the overall summary of the
inferences that can be drawn from the UAV/Ground ratio near the urban
roadway study and open highway study.

3.6. Random forest model evaluation

The random forest (RF) model was developed for flights near the
road using the parameters discussed earlier in section 2.4.1. The

Fig. 6. Intercomparison of (a) PM1, (b) PM2.5 and (c) PM10 mass concentrations for the flights near road and behind tree canopy.

Fig. 7. Inferences from the UAV/Ground ratio of PM measurements near urban road and open highway.
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performance of the RF model for the 10% test data is shown in Table 4.
The high R2 values (0.90–0.94) and low root mean squared error (RMSE)
(0.03–0.05) values suggest that the model performed reasonably well.

Fig. 8 shows the variation between the actual and predicted UAV/
Ground concentration ratio for the 10% test data for the flights near the
road. The results show that the values predicted by the model are close
to the actual values. The significance of the variables ground level
temperature, RH and wind speed expressed as mean (all three particle
sizes) percentage of feature importance were found to be 32.33%,
25.33% and 11.33% respectively. Mean percentage of the feature
importance for altitude was found to be 22.33%. The performance
metrics and the observations show that the RF model was accurate to get
the UAV/Ground concentration for the near-road flights based on the
ground-level parameters. The Random Forest model was developed
following a methodology similar to our previous study (Dubey et al.,
2022b), which involved vertical UAV measurements in an urban envi-
ronment. The primary objective of the model was to predict higher
altitude concentrations based solely on ground-level measurements. Our
earlier study demonstrated promising performance from the model. To
validate its efficacy, we conducted cross-validation using data from the
open highway study, revealing that the technique yielded fairly accurate
results across diverse study settings.

3.7. Limitations and uncertainties

The OPC N3 sensors employ a small fan to direct particles towards
the detector, unlike costlier PM monitoring instruments equipped with
an internal pump. The functioning of this fan may be susceptible to dust
accumulation, potentially impacting measurements. To mitigate this
risk, we utilized newly acquired OPC N3 sensors and ensured smooth

operation of the fan before each take-off. For more comprehensive de-
tails on the effect of wind, temperature, humidity and inter-comparison
with other PM sensor we recommend to refer our previous study with
detailed evaluation of performance of OPC N2/N3 (Dubey et al., 2022a).

Due to uncertainties over drone laws and regulations in India, we
were granted permission by the toll management at Debra, West Bengal,
to carry out our study for a limited period of time. We recognize that
extending this study over various seasons and meteorological conditions
would deepen our understanding of these factors’ influences. The results
from our study on the distribution of PM near open highway may vary
from season to season. More studies are required across different seasons
to better evaluate the influence of tree canopies on PM distribution.

4. Conclusions

The paper presented a UAV system consisting of PM and meteoro-
logical sensors to get vertical concentration profile of different PM sizes
up to 100 m above the ground level, near a major national highway in
India. The study also highlighted a unique and first-of-its-kind applica-
tion of UAV-based measurements to understand the effect of tree canopy
on PM distribution. The overall mean profile for flights conducted
behind the tree canopy indicates that PM mass concentrations decrease
with increasing altitude on both days. Conversely, for the near-road
flights, PM concentrations generally increase with altitude up to mid-
level altitudes or remain constant. However, a few flights did exhibit a
decline in PM concentrations at higher altitudes, reaching levels similar
to those observed in the flights behind the tree canopy. The findings
from measurements near the open highway indicate that tree canopy
cover alters PM mass concentration not only near ground level but also
several meters above, resulting in an overall reduction in PM1, PM2.5,
and PM10 concentrations by 29%, 24%, and 11%, respectively. The
comparative analysis between our earlier study conducted in urban
settings and the current study along open highways highlights distinct
patterns in particulate matter (PM) distribution. In urban environments,
street canyons trap PM near the ground level, thereby limiting its
dispersion. On the contrary, PM distribution along open highways is
more uniform, benefiting from unrestricted airflow that allows particles
to disperse more freely.

The study developed a relationship between the ground-level

Table 4
RF model performance metrics for UAV/Ground concentration predictions.

PM Size Model evaluation parameters

R2 RMSE

PM1 0.93 0.03
PM2.5 0.94 0.03
PM10 0.90 0.05

Fig. 8. Actual vs predicted ratio of UAV/Ground mass concentrations using RF model for (a) PM1, (b) PM2.5 and (c) PM10.
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concentration of PM with concentrations at different altitudes for the
flights near the road using an advanced machine learning algorithm
named random forest. This can be used for predicting concentrations at
different altitudes from the ground base measurements when the UAV-
based measurements are not feasible. Based on these results, we
recommend maintaining existing tree canopy cover along highways and
initiating replanting efforts on those sections of Indian highways where
trees were removed for the widening of highways. This strategy will help
mitigate particulate matter concentrations and improve overall envi-
ronmental health. We believe that the real-time vertical measurements
of PM in a traffic environment are essential to understand the PM for-
mation and distribution.

Our findings have shown that UAV-based vertical measurements of
PM offer several advantages such as high resolution, flexibility of flight
path, maneuverability, and hovering capability. UAVs will become the
most widely adopted technique to get the vertical profile of pollutants,
especially in micro-environments. More such studies must be carried out
in different environments to better understand the vertical distribution
of pollutants. Future studies may involve longer flight durations to
obtain adequate samples for pollutant characterization, which can be
ultimately used for source identification of PM at higher altitudes. With
long flight duration, improved mission safety, flight repeatability due to
improving autopilots, reduced operational costs as compared to manned
aircrafts, and availability of low-cost sensors, UAV technology presents a
promising solution for air quality measurement in the lower
troposphere.
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