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Abstract The Priestley‐Taylor (PT) model is a classic model of potential evaporation of terrestrial and
marine surfaces. It is now recognized that the Bowen ratio (β) implicit in the PT model is too sensitive to
temperature. The model also requires the surface net radiation (Rn) as input even though Rn is not an independent
external forcing. The maximum evaporation model (MEM) proposed by Yang and Roderick (2019, https://doi.
org/10.1002/qj.3481) is a potential candidate for replacing the PT model. Past studies have evaluated the MEM
for land ecosystems and for the global ocean. This study represents the first evaluation of the MEM for inland
waterbodies. Results are based on eddy‐covariance observation at a large lake and at a small fishpond. Although
there were complex error structures and error compensation patterns among its intermediate variables, the MEM
was able to reproduce the observed monthly (R2 > 0.95) and interannual variability (R2 > 0.78) in the lake latent
heat flux. A key assumption of the MEM, that the incoming and outgoing longwave radiation is coupled, was a
reasonable approximation at both the monthly and the annual time scale for the large lake and at the monthly
time scale for the small fishpond. This assumption allows the MEM to treat Rn as an intermediate variable
instead of a prescribed forcing. These results support the MEM as an alternative to the PT model at locations
where Rn measurements are not available. In situations where Rn data is available, a revised PT model with
reduced β temperature sensitivity is recommended.

Plain Language Summary Lakes are an important freshwater resource for the society. Accurate
prediction of how much lake water is lost via evaporation will improve management of this water resource. In
this study, we evaluate the performance of three models of lake evaporation including the Priestley‐Taylor
model, modified Preistley‐Taylor model, and maximum evaporation model, using data collected at a large lake
and at a small fishpond in Eastern China. We discuss the drawbacks and strengths of each and provide a
guideline on model choice contingent on input data availability. We show evidence that our model
parameterizations can be used for other ice‐free lakes in tropical and temperate climates.

1. Introduction
The Priestley‐Taylor (PT) model (Priestley & Taylor, 1972) is widely used for calculating evaporation from
surfaces with unlimited water supply. Like the Penman model (Penman, 1948), it is constrained by the surface
energy balance and is therefore more accurate than empirical models such as those based on the mass transfer
coefficient parameterization. It is simpler to use than the Penman model because it effectively treats the aero-
dynamic term as a ratio of the energy term, thus avoiding parametrization of the aerodynamic resistance. Only net
radiation (Rn), soil or water heat storage (G), and surface temperature (Ts) are needed as model inputs. The PT
model is the preferred choice for calculating evaporation of waterbodies (e.g., Fisher et al., 2023; Han &
Guo, 2023; Z. Liu et al., 2022; McMahon et al., 2016). For terrestrial surfaces with water limitation, the PT model
is often used to determine the upper limit of evaporation, and the actual evaporation is obtained by adjusting this
theoretical limit downward by an amount that depends on soil moisture availability (e.g., Fisher et al., 2023; Yao
et al., 2015).

The simplicity of the PT model comes with two drawbacks. First, implicit in the PT model is a functional
dependence of Bowen ratio β on Ts (Hicks & Hess, 1977). The accuracy of this function was first questioned by
Andreas and Cash (1996) using limited data collected in snow‐covered ground, lakes, and ocean surfaces. More
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recently, using monthly data over the global ocean, Yang and Roderick (2019) found that the PT model over-
estimates β for Ts < 297 K and underestimates β for Ts > 297 K. Z. Liu and Yang (2021) confirmed a similar bias
pattern with FLUNXET data collected in terrestrial ecosystems under conditions of ample soil water supply.
These implicit β biases may be the reason for why the PT model underestimates the evaporation of a subtropical
lake in the winter (Ts < 280 K; Xiao et al., 2020). Second, the requirement that Rn be a model input is problematic
in two respects: (a) there is interdependence between Rn, Ts, and evaporation E. Under the same incoming solar
radiation, a stronger Ewill result in a lower Ts, and in turn, the outgoing longwave radiation will be lower, leading
to a greater Rn. In other words, Rn is not an independent external forcing variable; (b) Rn is not a standard
measurement at lake surfaces, limiting the utility of the PT model.

To address these issues, Yang and Roderick (2019) developed a new theory of potential evaporation, a theory they
refer to as the maximum evaporation model (MEM). In this theory, the β‐Ts relationship is optimized using
observations over the global ocean. If for a particular site observational data on Rn are available, the theory can be
used to calculate the site evaporation, requiring Rn, Ts, andG as inputs as the original PT model. (In this study, this
mode of application is referred to as the mPT model.) More generally, Rn is predicted from coupling between the
incoming longwave radiation from the atmosphere (Rli) and the outgoing longwave radiation from the surface
(Rlo) and from the feedback between E and Ts. The theory treats the incoming solar radiation as the true external
forcing and estimates the two longwave radiation terms as intermediate variables. The calculated E has a local
maximum when plotted as a function of Ts. This maximum E is regarded as the true evaporation rate of the wet
surface. The theory, originally developed for the open ocean, has been shown to perform well for land ecosystems
with saturated soils (Tu et al., 2022; Tu & Yang, 2022). So far, it has not been tested for inland waterbodies.

One assumption of theMEM is that Rli is fully coupled with Rlo. This assumption is not valid at short (e.g., hourly)
time scales because synoptic weather variations can cause changes in Rli that are unrelated to Rlo of the local
domain. But observational evidence supports its validity at the monthly time scale (Tu et al., 2022; Yang &
Roderick, 2019). Currently, two open questions remain. The first one is whether this assumption holds at the
annual and interannual time scales. At these time scales, Rli is influenced by trends in cloud cover (Raghuraman
et al., 2023) and by background air temperature change and the buildup of water vapor in the atmosphere due to
rising temperatures (Stephens et al., 2012). In modeling studies of evaporation trends over decades or longer, Rli is
generally treated as an external forcing variable, not an intermediate variable coupled to the surface evaporation
itself (Golub et al., 2022; Wang et al., 2018). There is a need to investigate if the MEM can accurately describe
interannual variability of evaporation. The second open question concerns the coupling between Rli and Rlo of
small ecosystems. It is reasonable to expect full coupling between Rli and Rlo if the underlying surface is
extensive, such as the open ocean or a large lake. In the case of a small ecosystem such as a fishpond, its
evaporation is only a small contributor to the pool of water vapor in the overlaying atmosphere. Currently, there
are more than 11.7 million inland waterbodies with dimension smaller than 100 m in the world (Downing
et al., 2006; Verpoorter et al., 2014). It is not known how well Rli and Rlo are coupled at these small spatial scales.

One goal of this study is to investigate the above two open questions, using continuous eddy covariance ob-
servations made at Lake Taihu and at a fishpond site in Eastern China. Lake Taihu is a large lake with area of
2,400 km2 and is an ideal site to evaluate the coupling assumption. The fishpond is small (area 0.03 km2) and is
typical of small waterbodies in Eastern China. The Lake Taihu data set spans 12 years from 2011 to 2022 and the
fishpond data set spans 6 years from 2017 to 2022. The specific objectives of this study are: (a) to evaluate the PT
model, the mPT model and the complete MEM for calculating water surface evaporation; (b) to evaluate the
coupling assumption at the annual and interannual time scales; and (c) to compare the performance of these
models for the large lake and the small fishpond.

2. Materials and Methods
2.1. Observations

Lake Taihu is the third largest freshwater lake in China. Located in the Yangtze River Delta, Eastern China, it has
an area of 2,400 km2 and a mean depth of 1.9 m. Lake evaporation, sensible heat flux, microclimate variables, and
the four components of the radiation budget were observed at half‐hourly intervals starting from the summer of
2010 and at multiple locations in a program called the Lake Taihu Eddy Flux Network (Lee et al., 2014). The
present study uses the data collected at Bifenggang (site ID BFG; 31°10′N, 120°24′E), the longest running site of
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the network. Fetch is greater than 4 km in all directions. Water temperature was measured at 0.20‐, 0.50‐, 1.00‐,
and 1.50‐m depth. The water surface temperature was determined by the longwave radiation measurement, as

Ts =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Rlo − (1 − ε)Rli

εσ
4

√

(1)

where emissivity ε takes a dimensionless constant value of 0.97 for waterbodies (Campbell & Norman, 2012) and
σ is the Stephan‐Boltzmann constant. The albedo of this site was 0.079. Details regarding instrumentation, data
quality control, and gap‐filling procedures are given by Xiao et al. (2020) and Z. Zhang et al. (2020). According to
the 0.20‐m depth water temperature record, the lake was not frozen except for short periods from 23 to 27 January
2016 and for several hours on 31 January 2016 and 27 January 2018.

The fishpond site (31°58′N, 118°15′E) is also located in the Yangtze River Delta, with a linear distance of 200 km
from Lake Taihu. The site consists of four ponds next to one another, each about the size of 110 m by 60 m. The
measurement protocol was similar to that deployed at Lake Taihu. It consisted of eddy covariance measurement of
lake evaporation and sensible heat flux, measurement of the four components of net radiation, and measurement
of supporting microclimate variables (J. Zhao et al., 2019, 2021). The eddy covariance system was installed at the
midpoint of the four ponds. The observation started from 1 June 2017 and continued to 31 December 2022. Data
were reported at 30 min intervals. Data gaps were filled with the method described by Z. Zhang et al. (2020).
Water temperature was measured at 0.20‐, 0.50‐, and 0.80‐m depth. The water surface temperature was deter-
mined with Equation 1. The fishpond albedo was 0.041. According to the record of 0.20‐m water temperature,
there was no ice during the whole period except for the nights between 10 and 12 February 2018, lasting 4–7 hr in
each night.

2.2. Evaporation Models

2.2.1. The Priestley‐Taylor (PT) Model

The PT model expresses the latent heat flux λE as

λE = 1.26
∆

∆ + γ
(Rn − G) (2)

where Δ is the slope of the saturated vapor pressure versus temperature relationship (evaluated at Ts) and γ is the
psychrometric constant. This equation implies the following relationship between β and Ts,

β = 0.79 γ/Δ – 0.21 (3)

(Hicks & Hess, 1977).

2.2.2. The Modified Priestley‐Taylor (mPT) Model

Yang and Roderick (2019) show that the β‐Ts relationship described by Equation 3 is not accurate. A more ac-
curate expression, calibrated against the monthly ocean surface heat fluxes and the sea‐surface temperature data in
the global ocean surface evaporation product (Version 3) from the Objectively Analyzed Air‐sea Flux (OAFlux)
project (Yu & Weller, 2007), is

β = 0.24γ/Δ (4)

The surface energy balance equation is

λE + H = Rn − G (5)

Noting that β = H/λE and making use of Equation 4, we obtain from Equation 5 the modified PT model (mPT
model)
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λE =
∆

∆ + ηγ
(Rn − G) (6)

where the coefficient η is 0.24 for the open ocean.

2.2.3. The Maximum Evaporation Model (MEM)

Both the PT and the mPTmodel require that Rn and Ts be known. TheMEM bypasses this requirement by treating
Rn and Ts as implicit variables. A brief description of the MEM is given below for the reader's convenience.

In the MEM, albedo (α) is a prescribed parameter, and the incoming solar radiation Rsi is an external forcing
variable provided by field observation. The net radiation is given as

Rn = Rsi – Rso + Rli – Rlo (7)

where the outgoing shortwave (solar) radiation is given by

Rso = αRsi (8)

The incoming longwave radiation Rli is given by

Rli = σ(Ts − ∆T)4 (9)

Equation 9 indicates that the effective blackbody radiative temperature of the atmosphere is lower than the surface
temperature by ΔT. In the MEM, this temperature difference ΔT is parameterized as a function of latitude (lat)
and atmospheric transmissivity (τ), the latter of which is calculated as the ratio of the observed monthly incoming
solar radiation at the surface to that at the top of the atmosphere. The parameterization for ΔT is given by

∆T = 2.517 exp(2.38τ) + 0.03466|lat| (10)

where the parameter values were obtained by Yang and Roderick (2019) using monthly incoming and outgoing
shortwave and longwave radiative fluxes at the Earth's surface and the top of atmosphere over the global ocean,
with a spatial resolution of 1° × 1°.

The outgoing longwave radiation Rlo consists of radiation emitted by the surface and a small portion of Rli re-
flected by the surface (Lee, 2023; Yang & Roderick, 2019), and is calculated as

Rlo = (1 − ε)Rli + εσTs
4 (11)

In Equations 6–11, Rsi and G are provided by observation. The two unknowns are λE and Ts. They are obtained
numerically by finding the local maximum of λE in relation to Ts. The numerical procedure consists of four steps:
(a) setting up a loop for Ts in the range from 0°C to 40°C with an interval of 0.01°C; (b) calculating λE using the
above set of the equations at each interval of Ts; (c) plotting λE as a function Ts; and (d) finding the maximum λE.
The maximum λE and the corresponding Ts are taken as the true latent heat flux and the estimated water surface
temperature.

If the local observations at Lake Taihu were used to optimize the ΔT parameterization, Equation 10 was changed
slightly to

∆T = 2.175 exp(2.7056τ) + 0.0664|lat| (12)

The MEM calculation of λE was performed at both the monthly and the annual scale, using monthly or annual
mean radiation and meteorological inputs.
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3. Results
3.1. Relationship Between Bowen Ratio and Temperature

We found that the η value of 0.24 causes underestimation of the Bowen ratio at Lake Taihu and at the fishpond
site. Tuning against the observed monthly β and Ts, we obtained η = 0.32 for Lake Taihu and η = 0.33 for the
fishpond site (Figure 1). Using a shorter data set we published earlier, Z. Liu and Yang (2021) obtained the same η
value for the lake site. In the following, we adopt these local values for evaluating the performance of the mPT
model and the MEM.

The data presented in Figure 1 are monthly values. At the annual time scale, a larger PT coefficient has been
reported (Han & Guo, 2023; Xiao et al., 2020). However, we are unable to establish an annual relationship
between β and Ts due to the small range of the annual Ts (less than 2.2°C). In the following, model calculations
were carried out at the monthly time step.

3.2. Model Performance

Generally, all the three models are able to reproduce the observed seasonal variations in λE, with lower values in
the winter and higher values in the summer (Figure 2). At the monthly time scale, the modeled λE explains over
95% of the observed λE across the three models and the two sites (Table 1). The seasonal composite plot reveals
that the PT model has a high bias in the summer season and a low bias in the winter season (Figures 3a and 3d).
The mean biases are +6.1 and + 13.6 Wm− 2 in August and − 4.5 and − 6.0 Wm− 2 in January for Lake Taihu and
the fishpond, respectively. These biases result from the inaccurate β‐Ts relationship implicit in the PT model
(Equation 3). The use of locally tuned β‐Ts relationship in the mPT model makes these biases disappear
(Figures 3b and 3e). The MEM has seasonal biases in an opposite phase to the PT model, showing a mean bias of
− 20.8 and − 8.3 W m− 2 in August and +12.2 and + 6.2 W m− 2 in January for Lake Taihu and the fishpond,
respectively. The high biases and opposite signs in August and January indicate overestimation of Rln in the winter
and underestimation of Rln in the summer.

During the 12‐year observational period at Lake Taihu (Figure 4a), the annual averaged λE shows a generally
increasing trend, from the lowest value of 76.1 W m− 2 in 2011 to the highest value of 92.2 W m− 2 in 2022. The
three models have reproduced the trend and interannual variability reasonably well (Figure 4c). The coefficient of
variation R2 ranges from 0.78 (MEM, Lake Taihu) to 0.88 (mPT, Lake Taihu, Table 1). The PT model was biased
low, with ME of − 6.4 Wm− 2 and root mean square error (RMSE) of 6.8 Wm− 2. The mPT simulation was closer

Figure 1. The relationship between monthly Bowen ratio and surface temperature according to observations at Lake Taihu
(triangles) and the fishpond (circles), the Priestley‐Taylor (PT) model, and the global ocean observation.
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to the observation, with ME of − 3.2 W m− 2 and RMSE of 3.7 W m− 2. The MEM simulation had the best
agreement with the observation, with ME of 1.5 W m− 2 and RMSE of 2.7 W m− 2.

3.3. Comparison Between the Lake and the Fishpond

At the annual time scale, the mPT model reduces the mean error (ME) for both the lake and the fishpond by about
3.0 W m− 2 and reduces the RMSE also by about 3.0 W m− 2, in comparison to the PT model (Table 1). At the
monthly time scale, the change in ME from PT to mPT is similar between the two sites. The MEM shows a
positive ME at both sites and at both the monthly and the annual time scale, but the difference in ME between the
lake and the fishpond is reversed between the two time scales: The monthly ME is greater for the fishpond and the
annual ME is greater for Lake Taihu. Comparison at annual scale is inconclusive due to short annual time series
for the fishpond site.

3.4. Error Compensation Among Intermediate Variables in MEM

Examination of intermediate variables of the MEM reveals complex error structures and error compensation
patterns. A key intermediate variable is the surface temperature; it is used to calculate the outgoing longwave
radiation Rlo (Equation 11), the incoming longwave radiation Rli (Equation 9) and the slope of the saturation vapor
pressure curve Δ. At Lake Taihu, the observed monthly Ts was low in the winter and high in the summer, the

Figure 2. Comparison of observed monthly latent heat flux with predictions by the Priestley‐Taylor (PT), the modified Priestley‐Taylor (mPT), and the maximum
evaporation model (MEM) for the fishpond (a, b) and for Lake Taihu (c, d).

Table 1
Determination Coefficient (R2), Mean Bias Error (ME, W m− 2) and Root Mean Square Error (RMSE, W m− 2) of Latent Heat
Flux for the Priestley‐Taylor (PT), the Modified Priestley‐Taylor (mPT), and Maximum Evaporation Model (MEM)

Time scale Water bodies

PT mPT MEM

R2 ME RMSE R2 ME RMSE R2 ME RMSE

Monthly Lake Taihu 0.99 − 2.1 5.6 0.99 − 1.8 4.5 0.95 1.4 14.6

Pond 0.98 − 0.3 8.4 0.99 − 0.4 4.5 0.96 2.4 9.7

Annual Lake Taihu 0.85 − 6.4 6.8 0.88 − 3.2 3.7 0.78 1.5 2.7

Pond 0.83 − 6.3 6.5 0.85 − 3.4 3.7 0.85 0.2 1.5
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monthly mean Ts ranging from 1.4 to 32.7°C (Figure 5). The MEM predicts a similar Ts seasonal trend
(R2 = 0.73), but it overestimates Ts. The mean bias in Ts is smaller in the summer (+1.0°C) than in the winter
(+10.8°C). Similar biases are detected for the fishpond. This error structure is broadly consistent with Yang and

Figure 3. Seasonal composites of observed and predicted latent heat flux for the fishpond (a–c) and for Lake Taihu (d–f). (a,
d): Observation and Priestley‐Taylor (PT) model; (b, e): Observation and modified Priestley‐Taylor (mPT) model; (c, f):
Observation and maximum evaporation model (MEM).

Figure 4. Same as Figure 2 but for annual latent heat flux.
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Roderick (2019) who showed that the MEM Ts bias increases with decreasing temperature for the global ocean,
changing from +0°C at an ocean surface temperature Ts = ∼27°C to +10°C at Ts = ∼2°C.

Another intermediate variable is the net longwave radiation Rln = Rli – Rlo. In the MEM, this term is primarily
controlled by ΔT, the difference between the surface temperature and the blackbody radiative temperature of the
atmosphere, which is parameterized a function of atmospheric transmissivity τ for a given site at a fixed latitude.
According to this parameterization, Rln is linearly dependent on τ, becoming more negative as τ increases
(Figure 6). Even though the original parametrization has been optimized over a large latitudinal range across the
global ocean, it captures reasonably well the temporal dependence of Rln on τ at our sites. In fact, use of the local
ΔT parameterization (Equation 12) instead of the original parameterization (Equation 10) does not bring
improvement to the monthly and annual MEM results (Figure S1 in Supporting Information S1). However, two
small shortcomings deserve attention. First, when examined individually, the two longwave components show
systematic biases. On the annual basis, the outgoing component is biased high by about 50 W m− 2 which is
consistent with the high bias of the modeled Ts, and the incoming component is also biased high by a similar
amount (Figures 7c–7f). These two bases offset each other, resulting in much more accurate annual Rln than the
two components (Figures 7g and 7h). Second, the model underestimates Rln in the summer and overestimates Rln

in the winter (Figures 6a and 6b). The mean Rln bias is +8.4 and + 0.3 W m− 2 in January and − 14.5 and
− 13.6 W m− 2 in August for Lake Taihu and the fishpond, respectively.

The accuracy of the MEM λE is degraded by the bias error of Ts through its influence on the slope of the saturation
vapor pressure curve Δ. This error is more serious in the winter than in the summer. The observed and modeled
mean Ts are 5.7 and 15.4°C in January, respectively, for Lake Taihu (Figure 5). The corresponding Δ values are
63.5 and 112.3 Pa K− 1. Putting these values in Equation 6, we obtain 0.748 and 0.839 for the parameter group Δ/
(Δ + ηγ). The modeled Δ/(Δ + ηγ) value is 12.1% greater than the observation, with a mean bias error of 0.0907.
The observed and modeled Ts are 30.2 and 31.1°C in August for Lake Taihu. The corresponding Δ/(Δ+ ηγ) values
are 0.920 and 0.923, differing by only 0.4%, with a mean bias error of 0.0033.

Let δ1 denote the mean bias error in Δ/(Δ+ ηγ) caused by the Ts error, and δ2 the bias error in Rln. The total error in
λE can be written as

δ = δ1 × (Rn − G) + δ2 ×
∆

∆ + ηγ
(13)

Figure 5. Time series of observed and modeled monthly and annual Ts for the fishpond (a) and for Lake Taihu (b).
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Using the above bias values, δ1 was 0.0907 and 0.0033, and δ2 was 8.4 and − 14.4 W m− 2 in January and August,
respectively. With Rn – G of 42.0 W m− 2 in January, the first and second term of Equation 13 become +3.8
and + 7.1 W m− 2, respectively, in January for Lake Taihu, giving a total estimated error of +10.9 W m− 2 in λE.
This estimate is good agreement of the actual bias error of +12.2 W m− 2 (Figure 3f). In other words, the tem-
perature error contributes 35% to the error in λE. The error partitions are +0.5 W m− 2 (first term) and
− 13.4 Wm− 2 (second term) in August for Lake Taihu, indicating the λE error is dominated by the error of the net
longwave radiation.

3.5. Longwave Radiation Coupling in MEM

One important assumption made by the MEM is that the outgoing and incoming longwave radiation are coupled
and the difference between them is mainly dependent on atmospheric transmissivity. The coupling assumption
does not hold at short time scales, such as during cold front events when lake evaporation exhibits pulse‐like
patterns unrelated to radiation energy input (H. Liu et al., 2011; McGloin et al., 2015). The results of Yang
and Roderick (2019) and Tu et al. (2022) support this assumption at the monthly time scale. The Yang and
Roderick parameterization of the longwave dependence on atmospheric transmissivity is developed primarily
based on spatial correlation between the net longwave radiation and atmospheric transmissivity across the global
ocean. One question is whether this relationship based on spatial variability also works for temporal variability. In

Figure 6. Dependence of observed and modeled net longwave radiation on atmospheric transmissivity for Lake Taihu (a, c)
and the fishpond (b, d) at monthly (upper panels) and annual (lower panels) time scales. Data are separated by season. MAM:
March, April & May; SON: September, October & November; JJA: June, July & August; DJF: December, January &
February. Solid lines: regression lines for observational data; dashed lines: regression lines for model data.
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this study, the monthly transmissivity at Lake Taihu ranges from 0.22 to 0.59, with a mean value of 0.41, and that
at the fishpond ranges from 0.21 to 0.54, with a mean value of 0.42. These variations are temporal in nature,
consisting of seasonal changes as well as interannual variations. The modeled Rln is negatively correlated with τ
(r= − 0.95, p < 0.001 for Lake Taihu; r= − 0.95, p < 0.001 for the fishpond; Figures 6a and 6b). The observation
also shows significant negative correlation (r = − 0.63, p < 0.001 for Lake Taihu; r = − 0.75, p < 0.001 for the
fishpond; Figures 6a and 6b). These results indicate that Rli and Rln are indeed coupled at the monthly time scale at
both sites.

At the annual time scale, theMEM predicts a nearly perfect correlation between Rln and τ (Figures 6c and 6d). The
observed annual Rln at Lake Taihu is also correlated with τ (r= − 0.59, p < 0.05), although the correlation is not as
strong as the theoretical prediction. The dependence of the annual Rln on the annual transmissivity is especially
evident in 2013. There was a dramatic increase of the annual incoming shortwave radiation in 2013 in comparison
to the previous year (Figure 7a), indicating high transmissivity in 2013. In response, both the observed and
modeled Rln is lower in 2013 than in 2012. The regression slope of the observed Rln versus τ is
− 57.8± 55.7Wm− 2 per unit transmissivity change (mean± 95% confidence bound), compared to the theoretical
slope of − 92.1 ± 0.7 W m− 2. These two slope values are not statistically different (p = 0.129), implying that the
coupling assumption for Lake Taihu seems acceptable at the annual time scale. The results for the fishpond site
are inconclusive because the annual time series for the fishpond site is too short.

The coupling assumption implies that the incoming longwave radiation of the atmosphere is regulated by the
energy processes in a local domain. This seems at odds with the belief that at the annual and longer time scales, Rli

is driven by atmospheric changes at scales much larger than the local domain and hence should be viewed as an
external forcing variable, much like the incoming solar radiation (Rsi). On the decadal time scale, there is an
increasing trend in Rli globally. About half of this trend is contributed by rising atmospheric temperature and the
other half by water vapor buildup in the atmosphere (Stephens & Hu, 2010). According to atmospheric reanalysis,
Rli increases by 7.5Wm− 2 for every 1 K increase in temperature (Wang et al., 2021). At Lake Taihu, Rli increased
steadily over the 12‐year observational period (Figure 7c). Xiao et al. (2020) reported that the annual Rli at Lake
Taihu is positively correlated with water vapor pressure and cloud cover. Their attribution analysis indicates that
the Rli change is responsible for about half of the observed interannual variations in λE. We argue that the fact that
Rli is an external variable at these long time scales does not contradict the coupling assumption. Although
interannual changes in Rli reflect changes in atmospheric background, these changes will induce changes in the

Figure 7. Time series of observed and modeled annual mean radiation components. (a, b): Incoming shortwave radiation; (c,
d): Incoming longwave radiation; (e, f): Outgoing longwave radiation; (g, h): Net longwave radiation. Left panels: Lake
Taihu; Right panels: fishpond.
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local outgoing longwave radiation. Perhaps at the monthly time scale, the coupling is the result of τ response to
local Rlo (Yang & Roderick, 2019), indicating the modification of atmospheric water vapor by local processes. At
the annual time scale, the coupling can be viewed mostly as the response of the local Rlo to τ change.

A surprising result is that the MEM performed better in two respects for the small fishpond than for the large lake.
The annual mean bias in λE for the fishpond (+0.2 W m− 2) is smaller in magnitude than for Lake Taihu
(+1.5 W m− 2). The modeled λE seasonality is in better agreement with the observed seasonality at the fishpond
(Figure 3c) than at Lake Taihu (Figure 3f). In the Introduction, we ask the question about whether the coupling
assumption is valid for the fishpond because its evaporation should have negligible influence on the atmospheric
transmissivity. The observation data in Figure 6b imply that the monthly Rn, Ts, and λE are interdependent at the
fishpond, with significant Rln‐τ correlation within seasons. This interdependence is captured by the same
parameterization of Rln versus τ in the MEM. In this regard, the coupling assumption seems a good approximation
at the monthly time scale for the fishpond. At this small spatial scale, the incoming longwave radiation should be
viewed as an external variable rather than a response variable. However, its seasonal variation will cause to the
outgoing longwave radiation of the fishpond to respond. In this interpretation, the interaction between this at-
mospheric forcing and the response of this small waterbody also depends on atmospheric transmissivity in the
same way as the coupling between the incoming and the outgoing longwave radiation at the large lake.

4. Discussion
Our results reveal strengths and weaknesses of each of the three models of lake evaporation. One drawback of the
original PT model is that its Bowen ratio is too sensitive to temperature. The PT Bowen ratio is biased high in low
temperatures and biased low in high temperatures (Figure 1). For this reason, the modeled λE has a high bias in the
summer season and a low bias in the winter season (Figure 3). Another drawback is that it requires Rn as an input.
However, Rn is not a common measurement at lake sites.

The MEM offers a simple alternative to the PT model for locations where no Rn and surface temperature mea-
surements are available. The only required input variables are monthly incoming solar radiation and water heat
storage. Aside from this practical advantage, the MEM is considered to be more valid theoretically than the PT
model or the Penman model for determining the true potential evaporation or the true atmospheric demand for
evaporation of terrestrial surfaces (Tu & Yang, 2022). At our sites, the annual mean bias of the modeled λE is less
than 2 Wm− 2, although biases in the monthly λE are larger. Our analysis reveals complex compensation of errors
between warm and cold seasons and among the model intermediate variables (surface temperature and the
incoming and outgoing longwave radiation fluxes). These seasonal differences may have been caused by different
cloud patterns in the winter and in the summer. The idea about longwave coupling takes into account that τ is
greater if there is less water vapor in the atmospheric column, but it omits the dependence of τ on cloud patterns.
Even though water vapor and cloud amount are generally correlated, the downward longwave radiation also
depends on cloud height and cloud composition (liquid or ice); these properties differ between the winter and the
summer. The overestimation of Rln in the winter and underestimation of Rln in the summer is one reason for why
the MEM latent heat flux is biased high in the winter and biased low in the summer (Figures 3c and 3f).
Developing separate ΔT parameterizations for warm and cold seasons may therefore improve these seasonal
errors. The opposite MEM errors in the warm and the cold season explains why the mean bias in the annual λE is
actually lower than the mean bias in the monthly λE (Table 1). These intermediate variables can suffer large errors
and should not be used for other purposes except for computing λE in the MEM framework.

The mPT model (Equation 6) has the best performance among the three according to the performance matrix
(Table 1). It is the recommended choice in situations where observational data on Rn is available. A natural
question is whether the model with its parameter η tuned to the Lake Taihu observations (η = 0.32) can be
extended to other lakes. To answer this question, in Figure 8 we compare the three parameterizations of β versus
Ts against the lake evaporation data generated by a climate model for 1,400 lakes in the tropical and the temperate
Köppen climate zones (K. Zhang et al., 2023). In the climate model, the lake‐air fluxes of energy and water were
computed at hourly time steps at the subgrid level using the Lake, Ice, Snow, and Sediment Simulator (Subin
et al., 2012). The simulation year is 2016. The majority of these lakes (98.8%) are ice‐free throughout the year.
Each data point in Figure 8 represents a monthly value at one lake. This comparison shows that the tuned β
parameterization is superior to the original PT or the oceanic parameterization.
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Parameter η in Figure 1 was obtained by minimizing the RMSE of β against the observed monthly β. Our values
are within the range reported by Han and Guo (2023) for six water bodies in East Asia. We note that the tuned η is
nearly identical for the large lake and the small fishpond, supporting the conclusion reached by Han and
Guo (2023), that evaporation models based on energy conservation are independent of water body size.

Finally, all three models requires that the heat storage flux G be known. In the present study, G was determined
with observations of water temperature profile (Wang et al., 2014). In situations where such observations are not
available, G may be parameterized using the net radiation (Camuffo & Bernardi, 1982; Duan & Bas-
tiaanssen, 2015) or an equilibrium temperature (de Bruin, 1982; G. Zhao & Gao, 2019). Future research should
evaluate how these G parameterizations affect the performance of these models.

5. Conclusions
The results presented above support the use of locally‐tuned relationship between Bowen ratio and the surface
temperature and the coupling parameterization of the incoming and the outgoing longwave radiation. The PT
model showed high biases in the latent heat flux in the warm season and low biases in the cold season; deployment
of the tuned β‐Ts relationship in the mPT model removed these biases. The MEM surface temperature was biased
high in January by 9.7°C and only by 0.9°C in August. A consequence of this temperature bias is that the MEM
net longwave radiation was biased high in the cold season and biased low in the warm season, which explains the
high bias of the MEM latent heat flux in the cold season and low bias in the warm season. Another consequence is
that the slope of the saturation vapor pressure function was too high in the cold season, which also contributed to
the high bias of the MEM latent heat flux. When averaged over the observation periods, the MEMmonthly mean
bias error was 1.4Wm− 2 or 2% for the Lake and 2.4Wm− 2 or 3% for the fishpond and the annual mean bias error
was 1.5 W m− 2 or 2% for the lake and 0.2 W m− 2 or 0.2% for the fishpond; these errors seem acceptable for most
applications.

A key assumption of the MEM, that the incoming and the outgoing longwave radiation are fully coupled, is
originally proposed for the extensive global ocean surface and for the monthly time interval. We found it to be a
good approximation at both the annual and the month time scales and for the large lake as well as for the small
fishpond. Reasons for why these two streams of longwave radiation should be coupled at time scales longer than a
month and at such a small spatial scale are discussed. These results support the MEM as a practical alternative to
the PT model at locations without net radiation measurement.

Figure 8. Comparison of three Bowen ratio parameterizations against the results of a global climate model simulation. Color
indicates data density.
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The mPT model that has incorporated a locally‐tuned parameterization of the β dependence on temperature
produces the best performance among the three models. Application of this model is contingent upon the
availability of Rn observation. Comparison with a climate model simulation suggests that the β parameterization
tuned to Lake Taihu observations be applicable to other lakes in temperate and tropical climates under ice‐free
conditions, but a firm conclusion will require evaluation against more lake observations.

Data Availability Statement
The observation data are available at (Xiao et al., 2024).
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