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Abstract The Atmospheric Environment Monitoring Satellite (AEMS), launched by China in 2022, was
equipped with active remote sensing lidar for carbon monitoring. It adopts the Integrated Path Differential
Absorption (IPDA) technology to monitor global CO2 column concentration (XCO2). The calculation of cloud
top XCO2 requires cloud height data. A comparison between SRTM global elevation data and 1,572 nm channel
elevation data reveals a coefficient of determination (R2) of 0.998, with an average deviation of 1.24 m. The
cloud top XCO2 observations are consistent with the OCO‐2 and CarbonTracker trends. The ocean carbon
uptake rate, assessed by the difference in CO2 concentration between cloud top and sea surface, is
− 0.319 mmol/m2/h, which is in good agreement with the associated carbon flux data. This demonstrates the
great potential of IPDA lidar for remote sensing of cloud top CO2 and quantifying ocean carbon uptake.

Plain Language Summary For global greenhouse gas monitoring, passive remote sensing
technology has consistently struggled to balance the reliability and usability of monitoring data in cloudy
regions. The AEMS employs 1,572 nm IPDA lidar technology for active remote sensing of global XCO2,
enabling effective processing and utilization of cloud echo data. In this study, we focused on the concentrations
of CO2 columns using cloud top echoes and performed a preliminary comparison of cloud top XCO2 results with
related data products from the passive satellite OCO‐2 and CarbonTracker. By quantifying the difference in CO2

concentration between two altitude layers above the sea surface, we assessed ocean carbon absorption capacity,
and the results demonstrated high reliability. This work highlights the significant advantages of spaceborne
IPDA lidar in global CO2 measurement, cloud echo data processing, and ocean carbon flux assessment,
providing valuable data support for climate change research.

1. Introduction
CO2 is the most significant greenhouse gas (GHG) in the atmosphere, contributing approximately 80% to the
increase in radiative forcing over the past 5 years (IEA, 2022). The continuous rise in its concentration, primarily
driven by human activities, is a key factor in global climate warming. Therefore, high‐precision, all‐weather, and
extensive observations of atmospheric CO2 concentrations are crucial for advancing carbon reduction efforts,
identifying carbon sources and sinks, understanding the carbon cycle, promoting carbon science applications, and
supporting global climate change research (Araki et al., 2010; Zhao et al., 2023). Monitoring CO2 in the lower
atmosphere through remote sensing is essential for identifying carbon sources and sinks. Current greenhouse gas
monitoring satellites, such as GOSAT, OCO‐2, and OCO‐3, measure sunlight scattered from the Earth's surface to
calculate total column CO2 content. After decades of development, this technology has become highly accurate.
However, passive remote sensing, which relies on sunlight, is limited by solar elevation angles, making it
incapable of observations at night and in high‐latitude regions. It is also vulnerable to interference from clouds
and aerosols, which can obscure slight variations in CO2 concentration and reduce the reliability of data inversion
under cloudy conditions (Chevallier et al., 2014; Liang et al., 2017; Zheng et al., 2023). Approximately two‐thirds

RESEARCH LETTER
10.1029/2024GL113309

Special Collection:
Advances and Best Practices in
Boron‐based paleo‐CO2
reconstruction

Key Points:
• Inverting cloud top XCO2 using lidar

reflection signals above the cloud
enhances the utilization of satellite
observation data

• Based on passive satellite and model
data, the accuracy of atmospheric
environment monitoring satellite data
inversion is demonstrated

• First use of active remote sensing
satellites for assessment of marine
carbon uptake

Correspondence to:
L. Bu,
001779@nuist.edu.cn

Citation:
Mao, Z., Zhang, Y., Bu, L., Wang, Q.,
Xiao, W., Lee, X., et al. (2024).
Measurement of CO2 column
concentration above cloud tops with a
spaceborne IPDA lidar. Geophysical
Research Letters, 51, e2024GL113309.
https://doi.org/10.1029/2024GL113309

Received 7 NOV 2024
Accepted 21 NOV 2024

Author Contributions:
Conceptualization: Zhihua Mao,
Yang Zhang, Lingbing Bu
Data curation:Yang Zhang, Lingbing Bu,
Jiqiao Liu, Weibiao Chen, Sihan Liu,
Zhongting Wang
Formal analysis: Zhihua Mao,
Dingyuan Liang, Khalid
Muhammad Burhan
Funding acquisition: Yang Zhang,
Lingbing Bu, Qin Wang, Wei Xiao
Methodology: Zhihua Mao
Project administration: Yang Zhang,
Lingbing Bu, Qin Wang, Wei Xiao
Resources: Zhihua Mao, Yang Zhang,
Lingbing Bu, Qin Wang, Wei Xiao,
Xuhui Lee, Jiqiao Liu, Weibiao Chen,
Sihan Liu, Zhongting Wang

© 2024. The Author(s).
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

MAO ET AL. 1 of 9

https://orcid.org/0009-0006-3549-6212
https://orcid.org/0000-0002-9199-2177
https://orcid.org/0000-0003-1350-4446
https://orcid.org/0000-0001-8252-7073
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)2572-4525.BORON
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)2572-4525.BORON
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)2572-4525.BORON
https://doi.org/10.1029/2024GL113309
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2024GL113309&domain=pdf&date_stamp=2024-11-29


of the Earth's surface is covered by clouds, which further diminishes the effectiveness of passive remote sensing
satellite data (Feng et al., 2016). Therefore, compensating for the missing CO2 information in cloudy regions
would significantly enhance the usability of observation data (Baker et al., 2010; Palmer et al., 2019).

In 2007, the U.S. National Research Council proposed the ASCENDS program in its investigative report, which
aims to actively detect atmospheric CO2 emissions during both nighttime and daytime across different seasons (US
NRC, 2007). During NASA's ASCENDS airborne experiment activities in 2011, high‐resolution measurements of
absorption line shapeswere conducted using airborne equipment to distinguish echoes from shallow cumulus cloud
tops and the ground. This enabled the determination of CO2 VMR (volume mixing ratio) in the PBL (planetary
boundary layer). In subsequent studies, the cloud slicing method was used to derive VMRs for three vertical layers
(Ramanathan et al., 2015). The study found that compared to ground‐based XCO2measurements, the bias in cloud
top CO2 measurements is smaller, but the standard deviation is larger. This is primarily influenced by cloud top
roughness and reflectance (Mao et al., 2018). In 2017, the Shanghai Institute ofOptics and FineMechanics (SIOM)
of the Chinese Academy of Sciences conducted a ground‐based validation experiment for atmospheric CO₂
measurement using a 1.57 μm IPDA lidar system (Du et al., 2017). Subsequently, SIOM collaborated with NUIST
andother institutions to successfully develop a scaled‐down airborne version of the spaceborneACDLsystem.This
systemwas deployed for airborne CO₂ observation experiments (Zhu et al., 2020). In 2018 and 2021, two airborne
calibration flightswere conducted in Shanhaiguan, a coastal city, andDunhuang, a desert region, to demonstrate the
feasibility and precision limits of the system and its retrieval algorithms under complex geographical conditions
(Fan et al., 2024; Wang et al., 2022). Both ground‐based and airborne results indicated that the ACDL prototype
could achieve sub‐ppm accuracy, providing high‐precision CO₂measurements on a global scale (Wang, Mustafa,
et al., 2021; Zhu et al., 2021). In April 2022, China launched the world's first satellite equipped with CO₂ laser
detection capabilities: the Atmospheric Environment Monitoring Satellite (AEMS). Its primary payload, the
ACDL system, incorporates an IPDA lidar designed for global CO₂ monitoring. AEMS is designed to measure
atmospheric CO₂with a precision of better than 1 ppm, featuring a land resolution of 50 km and an ocean resolution
of 100 km. Using the Total Carbon Column Observing Network (TCCON) as the reference for cross‐validation,
comparisons between AEMS and TCCONXCO₂ observations indicate that ACDL's measurement bias is less than
1 ppm, with a system bias of 0.1± 1 ppm (Fan et al., 2024; Zhang et al., 2024). This paper analyzes cloud top echo
signals based on ACDL observation data from July 2022, compares spaceborne IPDA lidar cloud top XCO2 ob-
servations with OCO‐2 and CarbonTracker product data, and quantifies ocean carbon absorption intensity. The
data comparison and application provide a preliminary analysis of the ability of the IPDA lidar to remotely sense
cloud top CO2 column concentrations.

2. Instrumentation and Methods
2.1. ACDL System and IPDA Lidar

The main mission of ACDL is to use active laser technology for all‐weather detection of global atmospheric
aerosols and cloud vertical profiles, as well as global atmospheric CO2 concentration. This provides scientific data
for air quality monitoring, studying Earth's carbon cycle, and identifying carbon sources and sinks. The space-
borne ACDL system's laser emits four wavelengths: 532 , 1,064, 1,572.024 nm (online), and 1,572.085 nm
(offline). The atmospheric CO2 detection method is the IPDA technique, corresponding to the 1572 nm channel.

2.2. XCO2 Calculation Methods

The IPDA lidar emits two wavelengths, referred to as the online wavelength and the offline wavelength. As the
laser travels along the optical path, the online wavelength is strongly absorbed by CO2 molecules along the path,
while the offline wavelength is only weakly absorbed. By receiving the pulse echo signals of both wavelengths,
the CO2 column concentration along that transmission path is ultimately obtained Figure 1 illustrates the working
principle of the spaceborne IPDA lidar system, where XCO2 can be obtained using Equation 1,

XCO2 =
τCO2

2 × 10− 6 ⋅ IWF
(1)

where τCO2 is the differential absorption optical depth (DAOD) and IWF denotes the integral weight function
(Zhu et al., 2019).
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Using the passive satellite OCO‐2 and the CarbonTracker (CT) product, it is possible to calculate atmospheric
XCO2 profiles, the results of which can be used for comparison with IPDA lidar cloud top observations. The
calculation of the XCO2 data at the corresponding altitude is represented by Equation 2 (Wunch, D et al., 2010;
Mustafa et al., 2020).

XCOO
2 = XCOa

2 +∑
j
PT
j Kj ∗ (COi

2 − CO2a) (2)

where XCOa
2 is the a priori value of XCO2, P is the pressure weight function, K is the column averaging kernel,

COi
2 is the CO2 of the corresponding height stratum of CT, CO2a is the a priori contour value, j is the corre-

sponding vertical height stratum, and T stands for matrix transpose.

2.3. Methods for Calculating Ocean Carbon Fluxes

Observations using cloud top XCO2 can be used to calculate atmospheric ‘XCO2’ below the clouds, and the
difference in concentrations can be used to assess changes in carbon fluxes at the subsurface, where in the oceans
the carbon uptake can be calculated by Equation 3 (Shi et al., 2021).

Fc = ρw(XCO2C − XCO2ABL) (3)

Where Fc is the ocean carbon uptake, ρ is the density of the atmospheric boundary layer, w is the vertical wind
speed at the cloud top, and XCO2C and XCO2ABL are the CO2 column concentrations at the cloud top and boundary
layer, respectively.

3. ACDL Cloud Echo Data Analysis and Processing
3.1. Comparison of Altitude Measurement Data

Obtaining accurate cloud top XCO2 data relies on the precise calculation of the IWF and cloud top pressure, with
accuratemeasurement of cloud top altitude being a key factor (Jacobs et al., 2024). The IPDA lidar system employs
a 1,572 nm wavelength in the near‐infrared spectrum, achieving sub‐meter accuracy in distance measurements
(Arnold et al., 2019). This wavelength significantly reduces Rayleigh scattering caused by atmospheric molecules
and effectively penetrates atmospheric water vapor, thereby minimizing the impact of atmospheric absorption on
measurement precision. Even in the presence of stratus clouds, the system can still attain the necessary accuracy in
distance measurements (Gong et al., 2014; Mao et al., 2018; Sharma et al., 2016). The reflectivity of stratus clouds
in the 1,572 nm band can be up to 0.05 or even higher, and their surface‐hard‐target nature can be used as a hard
scattering surface for IPDA lidar to obtain accurate cloud top heights (Wang et al., 2020).

Figure 1. Schematic diagram of spaceborne IPDA lidar principle.
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The Shuttle Radar Topography Mission (SRTM), conducted jointly by NASA and the National Geospatial‐
Intelligence Agency (NGA), is a global elevation measurement project with a global elevation accuracy of
16 m (90% confidence) (Yang et al., 2011). Figure 2 compares ACDL elevation observation data with SRTM data
from a region of the African Sahara Desert with minimal human activity and footprints (discontinuities are due to
the exclusion of cloud data). In this area, the root mean square error (RMSE) between ACDL and SRTM data is
6.79 m, the coefficient of determination (R2) is 0.998, the mean deviation (MD) is approximately 1.24 m, and the
standard error (SD) is 6.67 m. These results demonstrate the high reliability of the ACDL system's elevation data.

3.2. Cloud Echoes Data Processing

In the absence of observational equipment with vertical resolution and airborne experiments for comparing cloud
top observations, ice crystal particle scattering at higher altitudes in cumulus and cirrus clouds can result in
extended optical paths. Significant fluctuations in cumulus cloud top heights and steep gradients of their
boundaries can increase observational noise for these cloud types. Additionally, the laser's ability to penetrate
most cirrus clouds diminishes detection effectiveness. In contrast, selecting stratus clouds can mitigate the
instability of deviations caused by large fluctuations in cloud top height and extended optical paths due to ice
crystal particles (Guerlet et al., 2013; Mao et al., 2018, 2024). We use two indicators, echo signal strength and
signal‐to‐noise ratio threshold, to exclude invalid values from different types of echo data.

Figure 2. Comparison of ACDL 1572 nm channel altitude measurements with SRTM elevation data.

Figure 3. Peak values and signal‐to‐noise ratio distributions of echo signals for different types of reflective surfaces. (a) Stratus clouds (b) sea surface (c) ground surface.
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According to the statistical comparison results in Figure 3, 93.4%, 97.4%, and 98.8% of stratus clouds top, sea
surface, and surface echo signals, respectively, met the screening criteria. This indicates that the three types of
echo data exhibit good spatial and temporal continuity. Among them, the land echo is the strongest, followed by
the stratus clouds top, while the sea surface is the weakest. As depicted in Figure 3a, the peak distribution of
stratus cloud top echo signal intensity ranges from − 24 to − 27 mV, with the signal‐to‐noise ratio peaking between
14 and 16. In comparison, sea surface signal intensity peaks between − 18 and − 20 mV, with a signal‐to‐noise
ratio of 10–11 (Figure 3b). The echo strength from stratus cloud‐tops surpasses that of the sea surface, ranking
just below ground surface echoes (Figure 3c). This indicates the high quality of stratus cloud top echo signals and
the high value of enhancing the utilization of IPDA lidar cloud top data.

4. Results
4.1. Calculation of Cloud‐Top XCO2

The relative variations in both macro‐ and micro‐meteorological phenomena (e.g., wind, convection, and tur-
bulence) and the spatial distribution of surface carbon sources and sinks contribute to fluctuations in CO2 con-
centrations influenced by atmospheric dynamics (Abshire et al., 2014; Fu et al., 2018; Lu et al., 2022; Mao
et al., 2024). As shown in Figures 4a and 4d, the cloud top heights are approximately 3,695 m and 1,586 m,

Figure 4. Cloud Top, Ground Surface, and Sea Surface Elevation and IWF, DAOD, XCO2 Distribution (where the Ground examples are a, b, c, and the Sea examples are
d, e, f, with shaded areas representing the standard deviation).
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respectively. The comparison reveals that the cloud top DAOD is smaller, with differences of approximately 0.17
and 0.10. This is due to the higher altitude of the cloud tops compared to the surface and sea level, which reduces
the influence of anthropogenic factors and natural emissions. Most CO2 is concentrated near the surface, leading
to higher DAOD from the surface and sea level to the top of the atmosphere compared to that from the cloud top to
the top of the atmosphere.

Two of the satellites are about 140 and 165 km apart at their sub‐stellar points, as shown in Figure 5. The data
from AEMS, OCO‐2, and CT exhibit minor differences in the vertical direction, and the trends in vertical
variation are consistent, with similar vertical distribution structures. This indicates that the CO2 concentration
distribution in the vertical direction of the atmosphere in this region increases with height. This phenomenon is
mainly due to the consumption of CO2 by daytime terrestrial plant photosynthesis and the absorption of CO2 by
the ocean in the lower atmosphere. Detailed vertical observation comparison results are shown in Table 1. When
the signal‐to‐noise ratio of the cloud top echo is sufficiently high, the accuracy and random error distribution of
cloud top XCO2 observations become comparable to those of land echo, exhibiting higher accuracy and reduced
random error.

4.2. Assessment of Ocean Carbon Sequestration Capacity

Since the Industrial Revolution, the global oceans have absorbed about 30% of human‐emitted CO2 (Khatiwala
et al., 2013). The global oceans' absorption of CO2 has played a crucial role in mitigating the increase in at-
mospheric CO2 levels caused by human activities (Landschützer et al., 2014; Wang, Mustafa, et al., 2021).
Furthermore, assessing the amount of CO2 absorbed by the oceans has always been a key focus and challenge in
carbon monitoring. Dang et al. proposed an idealized boundary layer model in 2011 to estimate the regional CO2

net flux of forests and grasslands. This model has promising applications in regions with minimal human emission
interference, such as oceans and forests (Dang et al., 2011). When oceanic XCO2ABL is calculated to be 392 ppm,

Figure 5. Satellite footprint distribution and vertical observation comparison results.

Table 1
Comparison of Vertical Observations in Different Data Sets (MRE Represents the Average Random Observation Error,
MSNR Stands for Average Echo Signal‐To‐Noise Ratio)

DataSet Ground‐surf GS‐cloud Sea‐surf SS‐cloud

AEMS 416.8 ± 0.9 ppm 419 ± 1.12 ppm 413.22 ± 1 ppm 413.99 ± 1.5 ppm

MRE:0.386 ppm (0.096%) MRE:0.455 ppm (0.11%) MRE:1.298 ppm (0.32%) MRE:1.315 ppm (0.33%)

MSNR:52.8 MSNR:45.9 MSNR:15.5 MSNR:15.8

OCO‐2 417.6 ± 0.59 ppm 418 ± 0.98 ppm 414.9 ± 0.4 ppm 414.7 ± 0.6 ppm

CT 417.78 ppm 419.45 ppm 414.5 ppm 414.6 ppm
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the oceanic carbon absorption amount for the region is − 0.319 mmol/m2/h as calculated by Equation 3, with a
total uncertainty of 7.2%, aligning well with existing ocean carbon flux data.

As shown in Figure 6, the light blue lines represent the footprints of the AEMS satellite. The carbon absorption
amounts in this sea area are − 0.26, − 0. 52, − 0.24, and − 0.32 mmol/m2/h (Figure 6a to Figure 6d), respectively.
The small differences between the oceanic carbon absorption amounts calculated by the IPDA lidar and the
related data indicate the reliability of calculating oceanic carbon absorption through cloud echo differences. The
terrestrial environment exhibits a more complex distribution of anthropogenic carbon emission sources, diverse
surface types, and ecosystems. Relevant models are currently under development and will be detailed in future
publications.

5. Discussion and Conclusions
Due to the high signal‐to‐noise ratio of the IPDA lidar for certain types of cloud echoes, processing cloud data can
significantly enhance the utilization of satellite observation data. In addition, we studied the vertical distribution
characteristics of CO2 based on cloud echoes that can help to identify the carbon sources and sinks in the lower
atmosphere and update our dynamic understanding of the carbon cycle.

The IPDA lidar is a highly precise greenhouse gas observation device, but the calculation of the elevation of hard
targets is a critical factor that is affecting its accuracy. By comparing with SRTM data, the ACDL elevation data
achieve an R2 of 0.998 with a root mean square error of only 6.67 m. The AEMS cloud top XCO2 results show
small differences from those of passive satellites and models, with similar trends. The oceanic carbon absorption
capability was assessed using XCO2 concentration differences based on cloud echo observations from the
spaceborne IPDA lidar and vertical height layers at the sea surface. The results show that the ocean carbon
absorption in the region is − 0.319 mmol/m2/h, which is consistent with carbon flux data from GCB, CMS, CT,
and CMEMS‐LSCE. Future work will involve a detailed analysis of other types of cloud echoes and will use
nighttime lidar observation data to estimate diurnal and nocturnal ocean carbon absorption, improving the
application of data in scientific research.
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Data Availability Statement
SRTM global elevation data can be accessed at https://srtm.csi.cgiar.org/srtmdata/. The CO2 profile data provided
by OCO‐2 can be obtained from (OCO‐2/OCO‐3 Science Team et al., 2020). Vertical wind speed data from
ERA5 (Hersbach et al., 2023). Ocean carbon flux data can be obtained from Global Carbon Budget (Hauck
et al., 2023), Carbon Monitoring System (Liu & Bowman, 2024), CarbonTracker (Jacobson et al., 2024), and
Copernicus Marine Service (Global Ocean Surface Carbon, 2023; Chau, T.‐T.‐T et al., 2022). The AEMS data

Figure 6. Distribution of ocean carbon absorption.
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used in this study was not publicly available at the time of submission. The data can be requested at https://data.
cresda.cn/#/home but is not accessible outside of China. Researchers in China with relevant licenses have free
access to satellite data.
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