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ABSTRACT

Few studies have investigated the spatial patterns of the air temperature urban heat island (AUHI) and its controlling
factors.  In this  study,  the data generated by an urban climate model were used to investigate the spatial  variations of the
AUHI  across  China  and  the  underlying  climate  and  ecological  drivers.  A  total  of  355  urban  clusters  were  used.  We
performed an attribution analysis of the AUHI to elucidate the mechanisms underlying its formation. The results show that
the midday AUHI is negatively correlated with climate wetness (humid: 0.34 K; semi-humid: 0.50 K; semi-arid: 0.73 K).
The  annual  mean  midnight  AUHI  does  not  show  discernible  spatial  patterns,  but  is  generally  stronger  than  the  midday
AUHI.  The  urban–rural  difference  in  convection  efficiency  is  the  largest  contributor  to  the  midday  AUHI  in  the  humid
(0.32 ± 0.09 K) and the semi-arid (0.36 ± 0.11 K) climate zones. The release of anthropogenic heat from urban land is the
dominant contributor to the midnight AUHI in all three climate zones. The rural vegetation density is the most important
driver  of  the  daytime  and  nighttime  AUHI  spatial  variations.  A  spatial  covariance  analysis  revealed  that  this  vegetation
influence is manifested mainly through its regulation of heat storage in rural land.
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Article Highlights:

•  The annual mean midday AUHI is negatively correlated with the precipitation gradient across China.
•  The urban–rural difference in convection efficiency is the largest contributor to the midday AUHI in humid and semi-arid
climate zones.
•   The rural  LAI is the most important driver of the AUHI spatial  variations,  mainly via its  regulation of heat storage in
rural land.

 

 
  

1.    Introduction

The urban heat island (UHI) refers to the phenomenon
of  higher  temperature  in  a  city  than  in  its  adjacent  rural
land. The UHI intensity can be quantified as the urban–rural
contrast  in  surface temperature (SUHI) and in  near-surface
air  temperature  (AUHI).  Both  quantities  are  city-scale
means. The SUHI is measured by thermal sensors on satel-
lites.  The same sensors  scan the  Earth’s  surface,  providing

consistent and repeated sampling of cities across the globe.
Generally,  the  SUHI  intensity  is  computed  from  the  city-
wide mean surface temperature and the mean surface tempera-
ture of rural pixels in a buffer zone outside the city (Imhoff
et al., 2010; Peng et al., 2012). Controls of spatial and tempo-
ral  patterns  in  the  SUHI  are  well  understood  (Zhao  et al.,
2014; Cao et al., 2016; Li et al., 2019; Manoli et al., 2019).
In comparison, our understanding of the AUHI patterns and
their  controlling  factors  is  still  primitive.  The  intensity  of
the AUHI is generally quantified with the screen-height air
temperature  observed  at  an  urban  weather  station  paired
with  a  rural  station  in  its  vicinity.  Owing to  large  intracity

 

  
* Corresponding authors: Wei WANG, Xuhui LEE

Emails: wangw@nuist.edu.cn, xuhui.lee@yale.edu 

 

ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 41, MAY 2024, 817–829
 
• Original Paper •

 

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press 2024
  

https://doi.org/10.1007/s00376-023-3012-y
https://doi.org/10.1007/s00376-023-3012-y
https://doi.org/10.1007/s00376-023-3012-y
https://doi.org/10.1007/s00376-023-3012-y
https://doi.org/10.1007/s00376-023-3012-y
https://doi.org/10.1007/s00376-023-3012-y
https://doi.org/10.1007/s00376-023-3012-y


variations in air temperature, a single station is an inadequate
representation  of  the  city-scale  mean  state  (Ziter  et al.,
2019; Venter  et al.,  2021; Qian  et al.,  2022).  Furthermore,
some  urban  stations  may  be  situated  in  urban  open
greenspaces, and are thus not representative of conditions in
built-up areas.

Published  studies  on  the  AUHI  at  the  regional  and
global scales reveal that the AUHI differs from the SUHI in
temporal patterns. Over the diurnal cycle, the SUHI peaks dur-
ing the daytime (Bounoua et al., 2015), but the AUHI is usu-
ally  greater  at  night  (Oke  and  Maxwell,  1975; Oke,  1981;
Jänicke  et al.,  2017).  In  terms  of  seasonal  variations,  the
SUHI appears stronger in hot and wet seasons (Zhang et al.,
2010), while the AUHI is stronger during cold and dry seasons
(Adebayo,  1987; Jauregui,  1997; Roth,  2007).  Studies  that
compare  the  SUHI  and  the  AUHI  across  climate  zones
show that the SUHI is stronger than the AUHI by an average
of  1.1  ±  1.1  K during  the  daytime and  0.3  ±  1.5  K during
the  nighttime  (Du  et al.,  2021).  Cities  in  the  arid  climate
zone  appear  to  be  exceptions,  where  the  AUHI  is  0.8  K
greater than the SUHI during the daytime (Du et al., 2021).

In comparison with the SUHI,  the spatial  variations in
the  AUHI  and  the  associated  biophysical  controls  are  less
understood. The SUHI is generally stronger in wetter climates
(Peng  et al.,  2012; Zhao  et al.,  2014; Cao  et al.,  2016; Li
et al., 2019; Manoli et al., 2019, 2020). A robust positive rela-
tionship exists between annual mean precipitation and the day-
time SUHI intensity (Zhao et al., 2014; Manoli et al., 2019).
With regard to the spatial  gradient in the AUHI, one study
showed that the AUHI is negatively correlated with climate
wetness  (Liu  et al.,  2020),  but  another  revealed  that  the
AUHI  is  uncorrelated  with  precipitation  (Du  et al.,  2021).
The divergence between these studies may be caused by site
selection uncertainties due to large intracity variations in air
temperature.

In this study, we used the data generated by an urban cli-
mate  model  to  investigate  spatial  variations  in  the  AUHI
and the underlying climate and ecological drivers. This strat-
egy  has  been  widely  used  in  studies  on  UHIs  as  across
North  America  (Zhao  et al.,  2014),  in  China  (Cao  et al.,
2016), and globally (Oleson et al., 2011; Zhao et al., 2021).
Use  of  model  data  instead  of  weather  station  observations
offers three advantages. First, in the model world, the AUHI
is a true city-wide quantity and is not subject to uncertainties
associated  with  intracity  microclimate  variability.  Second,
the  number  of  urban  clusters  is  large  enough  in  the  model
domain, allowing robust statistical analysis. Third, in addition
to  screen-height  temperature,  the  model  provides  complete
data on all the surface energy balance variables, allowing us
to  investigate  mechanisms underlying  the  AUHI formation
and to perform attribution of the AUHI intensity. A total of
355 urban clusters across China were used, spanning a large
climate gradient from subtropical climate in the southeast to
semiarid  climate  in  the  northwest.  Our  first  objective  is  to
investigate whether the spatial variations in the AUHI are pri-
marily  controlled  by  the  background  climate  (temperature
and  precipitation)  or  by  background  ecological  attributes,

such as leaf area index (LAI).
Our second objective is to perform attribution analysis

of the AUHI intensity. Zhao et al. (2014) carried out quantita-
tive  attribution  of  the  SUHI  to  different  drivers  (e.g.,
albedo,  convection  efficiency,  evaporation,  anthropogenic
heat, heat storage). According to Zhao et al. (2014), convec-
tion efficiency explains most of the spatial variations in the
SUHI. Here, convection efficiency is inversely proportional
to the aerodynamic resistance to heat transfer in the surface
layer  air.  Later, Rigden and Li (2017)  presented a  revision
of this attribution theory by including the surface resistance
to water vapor transfer. In the case of AUHI, no equivalent
solution exists. The published studies on the AUHI formation
are still based on statistical analysis. To our knowledge, the
study of Wang and Li (2021) appears to be the only excep-
tion. They proposed an attribution method of the AUHI by
linking  the  2-m  air  temperature  with  surface  temperature
through the assumption of  a  constant  heat  flux layer.  They
tested  their  method  against  the  AUHI  simulated  by  the
Weather  Research  and  Forecasting  model  in  two  cities
(Boston and Phoenix, USA) during a short heatwave event.
Here,  we  apply  a  similar  methodology,  but  to  the  annual
mean state and to more than 300 city clusters. In doing so,
we hope to elucidate the mechanisms underlying the AUHI
formation  under  different  background  climates  and  the
AUHI spatial variations across China. 

2.    Methodology
 

2.1.    Model data

The Community  Land Model  version 5.0  (CLM5.0)  is
the land component of the Community Earth System Model
(CESM) (Danabasoglu et al., 2020). It uses a nested hierarchy
consisting  of  up  to  five  land  units  (glacier,  urban,  agricul-
tural,  vegetation,  and  lake)  in  a  grid  cell  to  represent  the
land  surface  heterogeneity  at  the  subgrid  level  (Lawrence
et al., 2019a). The vegetation unit is further broken down to
plant functional types. In the present study, these plant func-
tional types are regrouped to tree, grass, shrub, and bare soil
tiles. The surface fluxes are calculated for each tile at subgrid
level,  then  the  area-weighted  average  is  computed  at  grid
level.  A  full  description  of  the  model  data  is  provided  by
Zhang et al. (2023). A brief summary is given below.

The simulation was conducted at a 0.9°×1.25° resolution
under  the  Representative  Concentration  Pathway  8.5
(RCP8.5)  scenario  from  2015  to  2100.  There  are  355  grid
cells  containing  both  urban  and  rural  tiles  across  China.
They fall into three climate zones: humid (201 grids), semi-
humid (118 grids), and semi-arid (36 grids) (Fig. 1) according
to  the  Köppen–Geiger  climate  classification.  In  CLM5.0,
plant  phenology  is  prescribed  by  satellite  observations
(Zhang et al., 2023). The surface data were fixed at present-
day  levels  in  the  simulation,  which  used  the  urban  land
cover  in  2020 under  the  Shared Socioeconomic Pathway 5
(SSP5) scenario from He et al. (2021). Prior to the coupled
simulation,  a  spin-up  simulation  was  conducted  offline
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using GSWP3 (Global Soil Wetness Project phase 3) observa-
tion data from 1991 to 2010. The forcing data were cycled
for  60  years  until  the  surface  climates  reached  equilibrium
[Fig.  S3  of Zhang  et al. (2023)].  The  initial  land  condition
for the spin-up simulation is a default initial file in the year
2011 provided by CESM2. Model  outputs  are  archived for
eight  land  tiles  (urban,  rural,  tree,  grass,  shrub,  bare  soil,
crop,  and  lake),  including  key  variables  on  the  physical
state, surface energy fluxes, and atmospheric forcing condi-
tions. The urban tile is based on the urban canyon concept,
which consists of five components: roof, sunlit wall, shaded
wall,  pervious  canyon  floor,  and  impervious  canyon  floor.
Hourly outputs  are available for  two periods:  2019–23 and
2096–2100.  We only  used the  variables  of  urban and rural
subgrid tiles at  hourly intervals from 2019 to 2023. Unless
stated otherwise, our analysis is restricted to midday [1300
LST (local solar time)] and midnight (0100 LST). The two
selected times can represent the typical daytime and nighttime
conditions  according  to  the  AUHI  diurnal  variations  [Fig.
S1  in  the  electronic  supplementary  material  (ESM)].  The
broad  spatial  patterns  among  the  three  climate  zones  are
unchanged if longer averaging periods (1200–1600 LST and
0000–0400 LST) are used (Table 1). Also archived are sub-
grid  auxiliary  data,  including  LAI,  urban  street  height-to-
width ratio, urban area fraction, and plant functional types.

The AUHI is computed as the difference in the screen-

height  air  temperature  between the  urban  tile  and  the  rural
tile in the same model grid. The temperature of the rural tile
is  an  area-weighted  average  of  bare  soil,  crop,  tree,  grass,
and shrub temperatures. In Fig. S2 in the ESM, we show the
air  temperature  of  these  individual  tiles  for  three  grid  cells
in  three  different  climate  zones,  corresponding  to  Nanjing,
Beijing  and  Urumqi,  to  demonstrate  typical  within-grid  air
temperature variations. 

2.2.    Attribution of the AUHI

In  our  study,  the  AUHI  intensity  is  quantified  as  the
2-m air temperature difference between the urban and rural
tiles (∆T2) in the same model grid cell. In the following, we
describe a diagnostic framework for attributing ∆T2 to differ-
ent biophysical drivers. The basis of this framework is the ana-
lytical  solution  of  surface  temperature Ts from  the  surface
energy balance equation (Zhao et al., 2014), 

Ts = Tb+
λ0

1+ f
(
R∗n−Qs+QA

)
, (1)

R∗n

λ0

where Tb is air temperature at the blending height,  is appar-
ent net radiation, QA is anthropogenic heat flux, Qs is storage
heat flux, f is the dimensionless energy redistribution factor,
and  is the local climate sensitivity. Qs is calculated as the
residual  of  the  surface  energy  balance  equation  (Lawrence
et al.,  2019b).  It  is  the  sum of  all  the  heat  storage  compo-
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Fig. 1. Spatial distribution of urban area fraction in each model grid cell across China.
 

Table 1. Daytime, nighttime and daily mean AUHI (mean ± one standard deviation; K) for three climate zones across China.

Averaging period (LST) Humid Semi-humid Semi-arid

Daytime 1200–1300 0.34 ± 0.14 0.50 ± 0.14 0.73 ± 0.13
1200–1600 0.46 ± 0.12 0.58 ± 0.10 0.73 ± 0.13

Nighttime 0000–0100 0.75 ± 0.31 0.95 ± 0.31 0.81 ± 0.37
0000–0400 0.71 ± 0.30 0.91 ± 0.30 0.80 ± 0.36

Daily 24-h mean 0.58 ± 0.19 0.75 ± 0.17 0.72 ± 0.23
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nents,  including  biomass  heat  storage  (Swenson  et al.,
2019), soil heat storage, and heat storage in canopy air. The
anthropogenic heat in CLM5.0 consists of space heating and
air conditioning loads to keep the indoor temperature within
a  comfortable  range.  Because  this  parameterization  omits
vehicle heat release, the anthropogenic heat flux in CLM5.0
is biased low (Zhang et al., 2023). Details of the parameteriza-
tion  are  described  by Oleson  and  Feddema (2020).  The
three intermediate variables are given by 

λ0 =
1

4σT 3
b

, (2)

 

R*
n = (1−α) K↓+L↓− (1−ε) L↓−εσT 4

b , (3)
 

f =
ρCpλ0

rt

(
1+

1
β

)
, (4)

εwhere σ is the Stefan–Boltzmann constant,  is surface emis-
sivity, K↓ is  incoming solar radiation, L↓ is  incoming long-
wave radiation, α is surface albedo, rt is the total resistance
for  heat  transfer  between  the  surface  and  the  blending
height, β is  the  Bowen  ratio  (ratio  of  sensible  heat  flux  to
latent heat flux), ρ is air density, and Cp is the specific heat
of air at constant pressure.

On  the  assumption  that  sensible  heat  flux  is  constant
with height between the surface and the blending height, we
can relate T2 to Ts as (Wang and Li, 2021) 

T2 = R (Ts−Tb)+Tb , (5)

where R = ra / rt,  and ra is  the  aerodynamic  resistance
between the 2-m height and the blending height.

Differentiation  of  Eq.  (5)  yields  a  diagnostic  equation
for the AUHI:

∆T2 ≈
[
λ0

1+ f

(
R*

n−Qs+QA

)
∆R + R

−λ0

(1+ f )2

(
R*

n−Qs+QA

)
∆ f1

]
+R

−λ0

(1+ f )2

(
R∗n−Qs+QA

)
∆ f2

[1] [2]

+R
λ0

1+ f
∆R*

n+R
−λ0

1+ f
∆Qs+R

λ0

1+ f
∆QA

[3] [4] [5] ,

(6)

where  Δ denotes  the  urban –rural  difference  in  a  variable.
The  changes  in  surface  roughness  and  Bowen  ratio  can
cause changes in energy redistribution. Their individual con-
tributions are given by  

∆ f1 =
−ρCpλ0

rt

(
1+

1
β

)
∆rt

rt

∆ f2 =
−ρCpλ0

rt

(
∆β

β2

)
.

(7)

Terms on the right hand side of Eq. (6) represent contri-
butions  from the  urban–rural  difference  in  convection  effi-
ciency  (term  1),  evaporation  (term  2),  radiative  forcing
(through changes in surface albedo and emissivity, term 3),
heat storage (term 4), and anthropogenic heat release (term 5).

In our diagnostic analysis, the blending height is equiva-
lent to the first model grid height (~30 m). The two resistance
terms are calculated from the following diagnostic relations: 

rt = ρCp
Ts−Tb

H
, (8)

 

ra = ρCp
T2−Tb

H
, (9)

where H is sensible heat flux. All other variables in Eq. (6)
are provided by the model.

To validate the attribution framework, we compared the

modeled AUHI with the sum of the component contributions
calculated offline according to Eq. (6). The results (Fig. S3)
show  excellent  agreement  at  midday  (r =  0.99, p <  0.001,
RMSE = 0.03 K) and acceptable agreement at midnight (r =
0.75, p <  0.001,  RMSE  =  0.26  K).  Expressed  as  climate
zone means, excellent agreement is found for midday, with
the absolute errors less than 0.03 K. At midnight, the absolute
errors are less than 0.21 K. 

2.3.    Statistical analysis

In  this  study,  three  statistical  analysis  methods  were
used to determine the main drivers of spatial patterns of the
AUHI across China. First, we performed a single-variable cor-
relation analysis to find the correlation coefficients between
the  midday  and  midnight  AUHI  and  two  types  of  drivers:
(1) six background climate drivers [annual mean air tempera-
ture T,  annual precipitation P,  incoming solar radiation K↓,
incoming longwave radiation L↓, net radiation Rn, and vapor
pressure deficit (VPD)]; (2) a background ecological driver
(rural LAI). All the drivers are provided by the CESM2 out-
puts. Danabasoglu  et al. (2020)  evaluated  the  performance
of CEMS2 in simulating historical air temperature and precipi-
tation.

Second, dominance analysis (Budescu, 1993; Azen and
Budescu, 2003) was used to determine the relative contribu-
tion  of  each  driver  to  the  spatial  variations  in  the  AUHI.
Prior  to  this  analysis,  all  the  variables  were  normalized
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between  0  and  1,  with  0  corresponding  to  the  minimum
value and 1 to the maximum value. Firstly, a stepwise multi-
variable regression was used to screen the predictors. Let us
suppose that we have m predictors after this screening. The
regression  model  with  all m predictors  is  the  complete
model.  We  can  establish  other  possible  regression  models
with fewer than m predictors (including null). These models
are called subset models. There are a total number of 2m − 1
possible subset models. To determine the dominance of pre-
dictor X1,  we  first  select  models  without X1 as  a  predictor.
We then calculate the increase in variance by adding X1 to
the  selected  subset  models.  This  process  is  repeated  for
other m − 1  predictors.  The  relative  contribution  of X1 is
expressed as the ratio of variance increase by X1 to the total
variance increase by all m predictors.

Third, a covariance analysis (Zhao et al., 2014) was per-
formed to determine how the main driver obtained with the
above two methods interacts with the biophysical contribu-
tions to influence the spatial variations in the AUHI. Let Cc,
Ce, Cr, Ch and CAH represent contributions from the five bio-
physical contributions [terms 1 to 5 in Eq. (6)]. Equation (6)
can be rewritten as 

∆T2 =Cc+Ce+Cr +Ch+CAH + e , (10)

where e denotes a residual error resulting from nonlinear inter-
actions among the biophysical factors. The spatial covariance
of the AUHI and the main driver is equal to the sum of the
covariance  between  each  component  contribution  and  the
driver: 

Cov (∆T2, driver) =Cov (Cc, driver)+Cov (Ce, driver)+
Cov (Cr, driver)+Cov (Ch, driver)+
Cov (CAH , driver)+Cov (e, driver) .

(11)
 

3.    Results
 

3.1.    Spatial patterns of the AUHI

The spatial pattern of the annual mean midday AUHI is
opposite  to  the  precipitation  gradient  across  China,  being
stronger in the semi-arid climate zone than in the humid cli-
mate zone (Fig. 2a). The annual mean midday AUHI of the
36  semi-arid  cities  in  Northwest  China  is  0.73  ±  0.13  K
(mean  ±  one  standard  deviation),  which  is  0.39  K  greater
than  that  of  the  201  humid  southern  cities  (Table  1).  The
annual mean midnight AUHI does not show a discernible spa-
tial  pattern  (Fig.  2b).  Averaged  across  the  whole  country,
the midnight AUHI (0.82 ± 0.33 K) is about twice the midday
AUHI (0.43 ± 0.19 K).

The diurnal cycle of the AUHI reported here is in broad
agreement  with  results  in  the  literature. Du  et al. (2021)
found that 65% of the global cities have a stronger AUHI at
night than in the daytime. Their  mean AUHI across all  the
cities was 0.6 ± 1.3 K during the daytime and 0.8 ± 1.4 K dur-
ing the nighttime. In the review of Arnfield (2003), the night-
time AUHI was generally stronger than the daytime AUHI.

This diurnal pattern is different from that of the SUHI,
which  is  usually  greater  during  the  daytime  than  at  night,
except  for  semi-arid  cities.  The  SUHI  can  be  negative  for
semi-arid  cities  during  the  daytime  (Zhao  et al.,  2014).
Here,  the  annual  mean  AUHI  is  positive  for  all  the  semi-
arid cities, both during daytime and at night.

In Fig.  3,  we  compare  our  modeled  AUHI  with  the
AUHI  observed  by Li  and  Zha (2019), Liu  et al. (2020),
Zhou  et al. (2023), Wang  et al. (2022),  and Peng  et al.
(2019) for cities in China. In this comparison, the modeled
daytime,  nighttime,  and  daily  AUHI  were  calculated  as
means of the modeled AUHI at the same local times and the
same  locations  as  in  each  of  these  observational  studies.
Our modeled daily AUHI agrees well with the observations
reported  by Peng  et al. (2019)  and Wang  et al. (2022)  for
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Fig. 2. Spatial distribution of the (a) midday and (b) midnight AUHI across China.
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the humid and semi-humid climate zones. Although the mod-
eled daily AUHI is slightly lower than the observations for
the semi-arid zone, the difference is not statistically signifi-
cant, with p = 0.08 (independent-samples t-test) when com-
pared with Peng et al. (2019), and p = 0.15 when compared
with Wang et al. (2022). The modeled daily AUHI is signifi-
cantly stronger than the observations reported by Zhou et al.
(2023)  for  the  humid  and  semi-humid  climate  zones  (p <
0.01),  and  it  is  nearly  identical  to  the  observations  for  the
semi-arid climate zone. The modeled daytime AUHI agrees
well  with  the  observations  reported  by Li  and  Zha (2019)
and Liu et al. (2020) for the humid and semi-humid climate
zones, but it is significantly stronger across the three climate
zones than that reported by Zhou et al. (2023) (p < 0.01). In
the  semi-arid  climate  zone,  our  modeled  daytime  AUHI  is

insignificantly  different  from  the  observations  reported  by
Li  and  Zha (2019)  (p =  0.44),  and  is  significantly  smaller
than that reported by Liu et al. (2020) (p < 0.01). Our modeled
nighttime  AUHI  broadly  agrees  with  the  observations
reported  by Li  and  Zha (2019)  across  the  three  climate
zones,  but it  is  lower than the values reported by Liu et al.
(2020). There is no significant difference between our mod-
eled nighttime AUHI and the observations reported by Zhou
et al. (2023) for the three climate zones (p > 0.42). Overall,
the  modeled  AUHI  falls  in  the  range  of  variations  among
these five observational studies.

A number of factors may have contributed to the differ-
ences in the modeled and observed AUHI, including underes-
timation of the anthropogenic heat flux in the model (Zhang
et al., 2023), mismatch in the observational [2009 in Li and
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Fig. 3. Comparison of the modeled AUHI with observations reported by Li and Zha (2019), Liu et al. (2020), Zhou et al. (2023),
Peng  et al. (2019)  and Wang  et al. (2022):  (a)  daytime;  (b)  nighttime;  and  (c)  daily.  Error  bars  are  one  standard  deviation  of
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Zha (2019);  1971–2003 in Liu  et al. (2020);  1981–2017 in
Zhou et al. (2023); 1984–2023 in Peng et al. (2019); 2019 in
Wang  et al. (2022)]  and  modeling  time  period  (2019–23),
and uncertainty in the observed AUHI arising from intracity
variations in air temperature. These intracity variations may
be a reason for why the standard deviation of the observed
AUHI  is  much  larger  than  that  of  the  modeled  result,  and
for  why  the  five  observational  studies  themselves  do  not
agree with each other. An open question is whether the true
AUHI can be obtained by a single pair of urban–rural stations
and whether urban–rural paired measurements may exagger-
ate  the  AUHI  intensity  (Zhou  et al.,  2023; Qian  et al.,
2022). The best strategy to solve the intracity variation prob-
lem is to increase the number of observation sites by using
high-density  networks  in  the  city  (Smoliak  et al.,  2015;
Qian et al., 2022). Although the comparison in Fig. 3 indicates
that the modeled and observed AUHI agree in order of magni-

tude, a more comprehensive evaluation of model errors will
require dense urban observation networks across the three cli-
mate zones. 

3.2.    Attribution of the AUHI

The AUHI is decomposed into five contributions from
urban–rural differences in biophysical factors, using the diag-
nostic framework described in section 2.2 (Fig. 4). Table S1
lists the climate zone means of the variables used for this anal-
ysis.  Let  us  first  examine  the  daytime  situation.  The
urban–rural difference in convection efficiency is the largest
contributor  to the AUHI in the humid (0.32 ± 0.09 K) and
the semi-arid (0.36 ± 0.11 K) climate zones (Figs. 4a, c). In
the semi-humid climate zone, the contribution from the differ-
ence in evaporation (0.21 ± 0.08 K) is close to the contribution
from the difference in convection efficiency (0.20 ± 0.09 K)
(Fig.  4b).  The  roles  of  radiative  forcing  and  heat  storage
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Fig. 4. Attribution of the AUHI in three climate zones. The midday AUHI and its component contributions in the (a)
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vary across climate zones. Both show negative contributions
to  the  AUHI  in  the  humid  climate  zone  (radiative  forcing:
−0.12 ± 0.05 K; storage heat: −0.05 ± 0.07 K; Fig. 4a), but
positive contributions in the semi-arid climate zone (radiative
forcing: 0.07 ± 0.07 K; storage heat: 0.10 ± 0.07 K; Fig. 4b).

Turning  attention  now  to  the  nighttime,  the  release  of
the anthropogenic heat from urban land is the dominant con-
tributor  to  the  AUHI  across  the  three  climate  zones.  The
largest  anthropogenic heat  contribution occurs  in  the semi-
arid climate zone (0.65 ± 0.23 K; Fig. 4f), due to space heating
in the winter.  The contributions from storage heat  reverses
sign  from  the  humid  climate  (0.28  ±  0.56  K)  to  the  semi-
humid (−0.20 ± 0.31 K) and the semi-arid (−0.48 ± 0.63 K)
climate zones (Fig. 4d). The rural land with sparse vegetation
absorbs  more  heat  than  urban  areas  during  the  daytime
(Table S1 in the ESM). The release of the stored heat during
the  nighttime  warms  the  rural  air  more  than  the  urban  air.
Therefore, the role of heat storage is to reduce the nighttime
AUHI in semi-humid and semi-arid climates.

The  radiative  forcing  term  [term  3  of  Eq.  (6)]  arises
from change in albedo (daytime only) and change in surface
emissivity  (both  daytime  and  nighttime).  Urban  land  has  a
smaller  emissivity  than rural  land (Table S1).  The result  is
less longwave radiation loss from urban land and more radia-
tion energy available to warm urban air, which increases the
nighttime  AUHI  (Figs.  4d–f).  This  positive  contribution
from the smaller urban emissivity is similar across the three
climate zones (0.27 to 0.37 K). During the daytime, the posi-
tive contribution from the emissivity difference may be offset
by  the  albedo  difference  between  urban  and  rural  land.
Across the three climate zones, the urban–rural difference in
emissivity  contributes  about  0.02  K  to  the  midday  AUHI.
The average urban albedo is higher than that of rural land in
humid and semi-humid climate (Table S1), which decreases
the midday AUHI by 0.14 ± 0.05 K for  the humid climate
zone and 0.03 ± 0.08 K for the semi-humid climate zone. In
the  semi-arid  climate  zone,  the  urban  albedo  is  slightly
smaller than that of the rural land, contributing a warming sig-
nal of 0.04 ± 0.07 K.

The attribution results for the AUHI are broadly consis-
tent  with  those  reported  for  the  SUHI  (Zhao  et al.,  2014;
Cao et al. 2016), but with one exception. In the SUHI attribu-
tion, only the total resistance rt is used as the convection effi-
ciency metric. In this study, convection efficiency is measured
by  a  combination  of rt and  the  resistance  ratio R.  For  the
same rt, a larger R indicates that heat dissipation is more diffi-
cult in the layer from the 2-m height to the blending height,
and the 2-m air temperature is higher. In the semi-arid climate
zone,  the  daytime rt of  urban  land  (57  s  m−1)  is  slightly
higher than that of rural land (54 s m−1), and the R of urban
land  (0.17)  is  also  greater  than  that  of  rural  land  (0.14;
Table  S1).  Both  factors  contribute  positively  to  the  AUHI
(Fig. 4c). In the humid climate zone, the daytime rt of urban
land  (70  m  s−1)  is  much  larger  than  that  of  rural  land
(37 m s−1), which contributes positively to the AUHI. How-
ever,  the  urban R (0.16)  is  smaller  than  the  rural R (0.22),
which contributes negatively to the AUHI and partially offsets

the contribution from changes in rt (Fig. 4a).
The resistance ratio R is  related to  the surface thermal

roughness length.  If  the surface is  smooth,  the temperature
profile will exhibit a larger vertical gradient near the surface
and  a  smaller  gradient  above,  and  we  expect  a  smaller R
according to Eq. (5). The temperature profile is logarithmic
with  height  in  neutral  stability,  and  the  resistance  ratio R
can be expressed as 

R =
ra

rt
=

T2−Tb

Ts−Tb
=

ln
(
z0,h+ z2

)− ln
(
z0,h+ zb

)
lnz0,h− ln

(
z0,h+ zb

) , (12)

where z0,h is  thermal  roughness  length, z2 is  the  screen
height (2 m), and zb is the blending height (~30 m). This equa-
tion  describes  a  positive  relationship  between R and z0,h

(Fig. S4 in the ESM).
We also  present  the  attribution  results  for  the  summer

(Fig. S5 in the ESM) and winter (Fig. S6 in the ESM). During
the summer, the urban–rural differences in convection effi-
ciency and evaporation are still the main contributors to the
midday  AUHI  for  the  three  climate  zones  (Figs.  S5a–c).
Unlike the annual mean results, the contribution from evapora-
tion  is  greater  than  that  from convection  efficiency  for  the
humid (Fig.  S5a)  and semi-humid (Fig.  S5b)  climate zone.
At summer midnight, there is no anthropogenic heat contribu-
tion, due to the lack of space heating (Figs. S5d–f). During
the winter, the urban–rural difference in convection efficiency
is the main contributor to the midday AUHI (Figs.  S6a–c).
The  winter  midnight  result  is  consistent  with  the  annual
result, showing that anthropogenic heat is the main contribu-
tor for all three climate zones (Figs. S6d–f). 

3.3.    Regression analysis

Our single-variable correlation analysis indicates that spa-
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tial variations in the midday AUHI are most strongly corre-
lated with the rural LAI (r = −0.71, p < 0.001; Fig. 5). This
correlation  is  negative,  meaning  that  the  daytime  AUHI
decreases  with  the  increasing  background  vegetation  den-
sity.  The  next  most  influential  factor  is  the  incoming  solar
radiation K↓ (r = 0.64, p < 0.001). A city with higher solar
radiation  tends  to  have  a  stronger  midday  AUHI.  Mean-
while,  the  daytime  AUHI  is  negatively  correlated  with  the
net radiation Rn (r = −0.54, p < 0.001). The seemingly contra-
dictory relationships between the AUHI and K↓ and Rn can
be interpreted through the process of longwave radiation feed-
back.  Higher K↓ causes  the  city  surface  temperature  to  be
higher, which in turn increases outgoing longwave radiation
and decreases Rn.

Generally,  the  midnight  AUHI  shows  weaker  correla-
tions with LAI and the background climate drivers than the
midday AUHI, consistent with the lack of spatial coherence
shown  in Fig.  2b.  The  strongest  negative  correlation  is
found  with  temperature T (r = −0.41, p <  0.001),  and  the
strongest  positive  correlation  is  found  with  LAI  (r =  0.35,
p < 0.001).

In the stepwise multi-variable regression, only precipita-
tion,  temperature,  incoming shortwave radiation,  net  radia-
tion,  and  LAI  remain  as  predictors  of  the  midday  AUHI.
The regression equation is 

∆T2,n = −0.15Pn+0.38Tn+0.53K↓,n−0.60Rn−
0.24LAIn+0.31

(r2 = 0.65, p < 0.001,N = 355) , (13)

where the subscript “n” denotes “normalized value”. The dom-
inance  analysis  revealed  that  LAI  and K↓ have  the  largest
(29%)  and  second  largest  (28%)  relative  importance  for
∆T2,  respectively  (Fig.  S7).  The  relative  importance  for
other  predictors  is  20%  for P,  15%  for Rn,  and  8%  for T.
This  indicates  that  LAI  and K↓ are  the  main  controlling
drivers of spatial variations in the daytime AUHI.

The same stepwise multi-variable regression yields the
following equation for the nighttime AUHI: 

∆T2,n = −0.37Pn+0.63Tn−0.17K↓,n−1.04L↓,n+

1.14LAIn+0.49

(r2 = 0.73, p < 0.001,N = 355) . (14)

Once again, LAI is the dominant driver of the spatial vari-
ation  in  the  nighttime  AUHI,  with  relative  importance  of
55%  (Fig.  S7  in  the  ESM).  The  relative  importance  for
other  predictors  is  16% for T,  16% for L↓ 11% for P,  and
2% for K↓.

Correlation  coefficients  between  the  AUHI  and  back-
ground  drivers  have  seasonal  variations.  LAI  is  still  the
main  driver  of  spatial  variations  in  the  summer  midday
AUHI  (Fig.  S8a  in  the  ESM).  Unlike  the  annual  mean
results, the incoming longwave radiation becomes the main
driver  for  both  the  midday  and  midnight  AUHI during  the
winter (Fig. S8b). 

3.4.    Biophysical  controls  of  spatial  variations  in  the
AUHI across climates

The above correlation and regression results reveal statis-
tical associations of the AUHI spatial variations with environ-
mental  conditions.  To shed light  on the underlying mecha-
nisms,  we  performed spatial  covariance  analysis  with  each
of the biophysical components of the AUHI.

This  analysis  was  firstly  applied  to  LAI,  since  LAI  is
the  most  important  driver  of  the  daytime  and  nighttime
AUHI spatial variations. The covariance analysis results indi-
cate  that  LAI  influences  the  spatial  patterns  of  the  AUHI
mainly  through  its  regulation  of  heat  storage  in  rural  land
(Fig.  6).  In  the  daytime,  the  overall  spatial  covariance
between the AUHI and LAI is negative, indicating that the
AUHI intensity decreases with increasing rural LAI, which
is  consistent  with Fig.  5.  Although  LAI  covaries  spatially
with all the AUHI biophysical component contributions, its
negative  covariance  with  the  storage  heat  contribution  is
dominant,  explaining  63%  of  the  total  spatial  covariance
(Fig.  6a).  Indeed,  LAI  and  the  heat  storage  contribution
show highly significant and negative linear correlation (r =
−0.89, p < 0.001; Fig. S9 in the ESM). Observational studies
show  that  land  with  sparser  vegetation  stores  and  releases
more  heat  during  the  day  and  at  night,  respectively,  than
land  with  denser  vegetation  (Oliver  et al.,  1987; Wang
et al., 2020). A physical interpretation of these spatial covari-
ance results is that if a city is surrounded by a rural landscape
with  denser  vegetation,  it  is  expected  to  experience  a
weaker  daytime  AUHI  because  less  heat  is  stored  in  the
rural  soil  and  more  energy  (including  heat  storage  in  the
canopy) is available to warm the rural surface air. According
to  the  CLM  calculation,  the  rural  midday  heat  storage  is
118 W m−2 (positive value indicating heat flux into the soil)
when the annual  LAI less  than 1 (102 cities,  mostly  in  the
semi-arid  and  semi-humid  climate  zones),  and  is  only
52  W  m−2 when  the  annual  LAI  greater  than  3  (14  cities,
mostly in the humid climate zone).

We have  shown that  the  nighttime AUHI is  positively
correlated with LAI spatially (Fig. 5). The spatial covariance
analysis  reveals  that  this  positive relationship is  dominated
by  the  storage  heat  contribution  covarying  with  rural  LAI
(Fig. 6b, Fig. S10 in the ESM). The average rural heat storage
term  is −24  W  m−2 at  midnight  (negative  value  indicating
that heat is released from the soil) for cities whose rural LAI
is  greater  than  3,  and  is −62  W m−2 for  cities  whose  rural
LAI is less than 1. If a city is surrounded by rural land with
denser vegetation, we expect less heat release from the rural
soil and biomass at night, a lower rural air temperature, and
a greater nighttime AUHI.

The midday AUHI shows a highly significant and posi-
tive  correlation  with  the  incoming  solar  radiation K↓
(Fig.  5).  The  underlying  mechanism  is  complex  according
to the spatial covariance analysis. This K↓ versus AUHI corre-
lation arises primarily from the influence of K↓ on the radia-
tive forcing contribution to the AUHI, and secondly from its
influence on the storage heat contribution (Fig. 7, Fig. S11
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∆R∗n

∆R∗n

∆R∗n

in the ESM). For cities with midday K↓ less than 500 W m−2,
the  midday  is  negative  (−25  W  m−2)  and  the  midday
∆Qs is positive (9 W m−2). These cities with low solar radia-
tion (62 in total) are found mostly in the humid climate zone
where  the  urban  albedo  (0.19)  is  higher  than  the  rural
albedo (0.12) and where the midday urban heat storage (90
W  m−2)  is  actually  higher  than  the  rural  land  (79  W  m−2;
Table S1). A negative  reduces the AUHI, and so does a
positive  ∆Qs.  For  high  solar  radiation  cities  (midday K↓
greater  than  600  W m−2),  the  mean  is −8  W m−2 and
the  mean  ∆Qs is −5  W m−2.  In  these  cities,  which  are  dis-
tributed  in  three  climate  zones  (18  cities  in  the  humid,  15
cities  in  the  semi-humid,  22  cities  in  the  semi-arid  climate
zone),  radiative  forcing  and  heat  storage  changes  also
reduce the AUHI intensity, but by smaller amounts than in
low solar radiation cities. 

4.    Discussion

We note that there is more than one way to perform diag-
nostic  analysis  of  the  surface  temperature  response  to  land
use (e. g., Juang et al., 2007; Wang and Li, 2021). Here, it is
instructive to compare our method with that used by Wang
and Li (2021). In their study, they omitted the anthropogenic
heat flux, which may be justifiable because their focus was
a short heatwave event. In our study, we find this component
to be a large contributor to the annual mean AUHI at night
(Fig. 4). Another difference arises from the treatment of sur-
face evaporation. We treated the Bowen ratio as an indepen-
dent variable and obtained the latent heat flux as the product
of  the  sensible  heat  flux  and  Bowen  ratio. Wang  and  Li
(2021)  used  a  bulk  transfer  parameterization  with  surface
resistance to calculate surface evapotranspiration. In their for-
mulation, the latent heat flux is expressed as a function of sur-
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Fig. 6. Covariance of rural LAI and different AUHI biophysical factors.
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Fig. 7. Covariance of incoming solar radiation and different AUHI biophysical factors.
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face temperature. They considered the AUHI as the sum of
11 contributors.  In  this  respect,  their  diagnostic  framework
is more complete than ours. On the other hand, by utilizing
the Bowen ratio instead of surface resistance, our method is
less  prone  to  outlier  influence.  This  feature  is  desirable  in
our  efforts  to  compare  multiple  cities  across  a  large  geo-
graphic  gradient  because  too  many  outliers  may  introduce
biases to such a comparison.

One element common to both approaches is the use of
two air  resistances to  characterize  the convection contribu-
tion. In this regard, our result is consistent with the study by
Wang and Li (2021).  They found that,  during the daytime,
the urban–rural difference in ra is negative for Boston, a city
in  humid  climate,  meaning  that  heat  transfer  between  the
2-m  height  and  the  blending  height  is  more  efficient  over
the city than over the adjacent rural land. Their results show
that the larger resistance from the 2-m height to the blending
height  for  heat  transfer  over  the  rural  land  with  tall  trees
decreases the daytime AUHI by about 0.5 K. In the present
study, the urban resistance ratio R (0.16) is smaller than the
rural R (0.22; Table S1), which contributes negatively to the
AUHI  by  about  0.4  K  (inset, Fig.  4a).  The  role  of ra is
reversed for Phoenix, a city in dry climate, which is a positive
contributor to the daytime AUHI. Similarly, in semiarid cli-
mate, the R of urban land (0.17) is greater than that of rural
land (0.14); this difference is a positive contributor to the day-
time AUHI (inset, Fig. 4c).

One limitation of the present modeling framework is its
simplistic representation of the urban landscape. It lumps all
urban land in a grid cell into a single tile, without distinguish-
ing  individual  cities  within  the  grid  cell.  Within  the  urban
tile,  only  three  morphological  types  (tall  building  district,
high  density,  and  medium  density)  are  allowed.  Further-
more, the current version of CLM does not have the capacity
to handle urban vegetation. One way to overcome this limita-
tion is to deploy a mesoscale model with urban representa-
tion,  such  as  the  one  used  by Wang  and  Li (2021).
Mesoscale models can include detailed prescriptions of soil
moisture,  greenspace,  and  intracity  variation  of  building
attributes.  Generally,  mesoscale  urban  modeling  has  been
restricted to a short  duration of a few days to a few weeks
and  to  a  few  cities,  and  requires  heavy  calibration  against
observations.  The  computational  cost  would  be  prohibitive
to  run  such  a  model  over  5  years  and  for  more  than  300
cities, as was done in the present study.

The  blending  height  assumption  also  deserves  atten-
tion.  The  urban  and  rural  tiles  in  the  same  model  grid  are
influenced  by  identical  atmospheric  conditions  specified  at
the  blending  height,  including  air  temperature,  humidity,
incoming solar radiation K↓, and incoming longwave radia-
tion L↓.  Strictly,  the  blending  height  assumption  does  not
hold for K↓ and L↓. Urban air is more polluted than rural air.
Urban aerosols can reduce K↓ in the daytime and increase L↓
both  during  the  day  and  at  night.  Although  the  effect  of
changes in the incoming radiation on the daytime UHI is neg-
ligible  due  to  efficient  convection  mixing,  nighttime

changes  in L↓ can  enhance  the  UHI  intensity  (Cao  et al.,
2016).  According  to  seasonal  and  annual  observations  at
paired urban and rural sites in Basel, Switzerland (Christen
and Vogt, 2004), Beijing, China (Wang et al., 2015), Berlin,
Germany (Li et al., 2018), Nanjing, China (Guo et al., 2016)
and Montreal, Canada (Bergeron and Strachan, 2012), we esti-
mated  that  the  mean  increase  of L↓ in  urban  air  relative  to
the rural reference is +5.4 W m−2. This is roughly the same
as  the  mean  midnight  anthropogenic  heat  flux QA in  the
humid climate and half of the midnight QA in the semi-arid
climate (Table S1).  According to Fig.  4,  the increase of L↓
should contribute to the midnight AUHI by about 0.3°C. 

5.    Conclusions

In this paper, a global dataset of subgrid land surface cli-
mate variables produced by climate model was used to investi-
gate the spatial variations in the AUHI and the underlying cli-
mate  and  ecological  drivers  across  China.  Results  are  pre-
sented for individual city clusters as well as mean values for
three  climate  zones  (201  cities  in  the  humid,  118  cities  in
the  semi-humid,  and  36  cities  in  the  semi-arid  climate
zone). We found that:

(1) The annual mean midday AUHI is negatively corre-
lated with the precipitation gradient across China. The highest
mean  AUHI  occurs  in  the  semi-arid  climate  zone  (0.73  ±
0.13  K),  followed  by  the  semi-humid  (0.50  ±  0.14  K)  and
humid (0.34 ± 0.14 K) climate zones. The annual mean mid-
night AUHI is stronger than the midday AUHI, but without
discernible spatial patterns.

(2) The urban–rural difference in convection efficiency
is the largest contributor to the midday AUHI in the humid
and semi-arid climate zones,  contributing 94% and 49% to
the total AUHI, respectively. The release of the anthropogenic
heat from urban land is the dominant contributor to the mid-
night AUHI in all three climate zones.

(3) The rural LAI is the most important driver of the day-
time and nighttime AUHI spatial variations. LAI influences
the spatial patterns of the AUHI mainly through its regulation
of heat storage in rural land.

We caution that these conclusions are based on data gen-
erated  by  an  urban  climate  model.  Although  the  modeled
AUHI  agrees  in  magnitude  with  the  observed  AUHI  in
China, the statistical associations with precipitation and LAI
need further experimental evaluation. In particular, the con-
nections among the LAI, heat storage, and AUHI spatial distri-
bution should be viewed as a hypothesis requiring indepen-
dent validation.
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