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Abstract
The extent of wildfires in tundra ecosystems has dramatically increased since the turn of the 21st
century due to climate change and the resulting amplified Arctic warming. We simultaneously
studied the recovery of vegetation, subsurface soil moisture, and active layer thickness (ALT)
post-fire in the permafrost-underlain uplands of the Yukon–Kuskokwim Delta in southwestern
Alaska to understand the interaction between these factors and their potential implications. We
used a space-for-time substitution methodology with 2017 Landsat 8 imagery and synthetic
aperture radar products, along with 2016 field data, to analyze tundra recovery trajectories in areas
burned from 1953 to 2017. We found that spectral indices describing vegetation greenness and
surface albedo in burned areas approached the unburned baseline within a decade post-fire, but
ecological succession takes decades. ALT was higher in burned areas compared to unburned areas
initially after the fire but negatively correlated with soil moisture. Soil moisture was significantly
higher in burned areas than in unburned areas. Water table depth (WTD) was 10 cm shallower in
burned areas, consistent with 10 cm of the surface organic layer burned off during fire. Soil
moisture and WTD did not recover in the 46 years covered by this study and appear linked to the
long recovery time of the organic layer.

1. Introduction

The Arctic is warming at rates up to four times
the global average, resulting in rapid and endur-
ing changes [1–5]. In the treeless tundra biome,
fire frequency, intensity, and burned area markedly
increased in recent decades, illuminating how tundra
fire is changing with anthropogenic climate change
[6–11]. Tundra fires have significant implications
ranging from local changes in vegetation and biogeo-
chemical cycling to global-scale impacts from green-
house gas emissions [12–14]. As air temperatures

increase, precipitation becomes more variable and
extreme, and storms intensify, the dry conditions and
lightning events that prime tundra landscapes for fire
are likely to become more common [15–17].

Fire causes permafrost—ground that stays at or
below 0 ◦C for two or more consecutive years—to
thawby altering the local thermal and radiative energy
balance. Fire decreases the surface albedo and elim-
inates shading and insulation from organic material
[18]. This increases the energy absorbed by the sur-
face, thereby increasing soil temperature and active
layer thickness (ALT). ALT—maximum thaw depth
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reached at the end of the thaw season—is a key indic-
ator of permafrost status [19]. ALT increases due
to fire have historically recovered in approximately
25 years as vegetation recovered [20, 21]. However,
post-fire permafrost thaw in addition to climate-
driven thaw may lead to long-term changes [22–24].

Surface soil moisture increases after a fire, and
this has been attributed to decreases in transpir-
ation and precipitation interception while vegeta-
tion reestablishes [25–27]. However, while vegeta-
tion regrows rapidly within a few years post-burn
[18], the increase in soil moisture persists for decades.
The reduction of transpiration immediately post-
fire alone cannot explain why elevated soil moisture
persists.

Post-fire succession can take decades to recover
pre-burn communities [3, 28]. For example, lichen
mats, which play an insulating role, can take over
four decades to near pre-fire cover abundance [3, 29,
30]. Shrubification—an increase in vascular woody
plants—is a post-fire response in some areas, as well
as a broader phenomenon correlated with warming
temperatures [4]. Increased shrub cover may worsen
tundra fire by altering the fuel landscape and main-
tain awarmer soil columnby trapping snow and insu-
lating the ground in the winter [3, 14, 31, 32].

A clear picture of tundra landscape recovery after
fire is critical to understanding the impact of fire
under a changing climate. The Yukon–Kuskokwim
Delta (YKD), the warmest tundra region in Alaska,
lies in the discontinuous permafrost zone with mean
annual average air temperatures near 0 ◦C [33],
making it distinctly vulnerable to permafrost thaw
and degradation from fire disturbance [34, 35].
Southwestern Alaska, where the YKD is situated, has
experienced a large proportion of global tundra fire
activity since 2015 [11, 20] andhas a robust burn peri-
meter record, making it an ideal setting to study tun-
dra fire recovery. Previous studies have used remote
sensing data, field studies, and space-for-time sub-
stitutions to create statistical models of tundra fire
recovery, but each focused only on specific landscape
characteristics [3, 20, 25, 36].

Here, we simultaneously study the recovery of
vegetation, soil moisture, and ALT to understand
the impacts of fire in the YKD. We create statist-
ical models of recovery using space-for-time substi-
tutions with remote sensing data. We analyze indices
derived from Landsat 8 data that describe vegetation,
albedo, and surface moisture content. We investigate
ALT, surface subsidence, soil volumetric water con-
tent (VWC), and water table depth (WTD) derived
from airborne synthetic aperture radar (SAR) along-
side in situ data, both from NASA’s Arctic-Boreal
Vulnerability Experiment (ABoVE). Simultaneously
evaluating surface characteristics and subsurface geo-
physical variables provides a unique, integrated pic-
ture of vegetation, hydrology, and permafrost ther-
modynamics recovery after tundra fire.

2. Methods

2.1. Study area
The YKD is a large tundra region in southwestern
Alaska (figure 1) characterized by the deltaic land-
scapes of the Yukon and Kuskokwim Rivers. Inland
portions encompass eolian and volcanic upland
environments where soil, fuel, and climatic charac-
teristics are conducive to fire [37]. Unburned tundra
vegetation is comprised of lichens, Sphagnum moss,
and dwarf shrubs [3, 28, 38]. Lichens are a primary
fuel for fires, and fire severity is usually moderate to
low [3]. Over 8.5 million acres have been recorded as
burned from 1950 to 2022 in the YKD, with over half
of this area being burned since 2015 [39]. The Yup’ik
and Cup’ik peoples inhabiting the YKD compose one
of the largest Indigenous populations in the circum-
polar Arctic [2], and several of their villages are near
fire perimeters in the study area.

The YKD is underlain by ice-rich, discontinuous
permafrost with numerous thermokarst lakes. Most
of the burn perimeters in the study area are within
the Izaviknek-Kingaglia Uplands, where lakes are less
common due to the hilly topography. Permafrost is
widespread on shallow hillslopes but not in gullies
or under streams or lakes [20]. Modeling predicts
the region will not be underlain by permafrost by
2100 [34, 35]. Our study area is approximately 85 km
northwest of the nearest long-term climatological sta-
tion at Bethel Airport, where themean annual average
air temperature was−0.3 ◦C from 1981–2020 [40].

2.2. In situ ALT and VWC
In situ ALT and VWC data were collected in August
2016 within and around the extensive 2015 Kuka
Creek and Izavlknek River fire perimeters as a
part of the NASA ABoVE field campaign [42, 43].
ALT—as reasonably approximated by late-season
thaw depth—was measured by pushing a mech-
anical probe into the ground until the permafrost
table was reached (uncertainty ± 3 cm) [42]. Active
layer dielectric permittivity was measured using
ground penetrating radar [42] and transformed into
VWC integrated over the depth of the active layer
(VWCbulk) using a petrophysical transform [44]. Out
of the 916 collocated measurements of ALT and
VWCbulk in the study area, the field team classified
204 as burned and 716 as unburned. One record was
removed due to an unrealistic VWCbulk value that
exceeded 1.00 cm3 cm−3.

2.3. SAR-derived variables
The Permafrost Dynamics Observatory (PDO) data-
set is based on airborne SAR flown in 2017 as part
of NASA ABoVE [45, 46]. We analyzed rasters of sea-
sonal subsidence (hereafter ‘subsidence’), ALT, ALT
uncertainty, WTD, and the average VWC integrated
over four depths: from the surface to 6 cm depth
(VWC6), to 12 cm (VWC12), to 20 cm (VWC20), and
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Figure 1. Study area in the Yukon–Kuskokwim Delta (YKD). Panel (a) shows the study area within the state of Alaska and the
Alaskan tundra ecoregions as defined by Gallant et al [41]. Panel (b) depicts the burn perimeters colored by fire year, the 1 km
unburned buffers surrounding each burn perimeter, the extents of the Landsat 8 and airborne synthetic aperture radar (SAR)
imagery, and the locations of in situ data from August 2016. Seasonal subsidence relies only on L-band SAR and thus extends
further south (blue hatching) than the SAR products that use both P- and L-band SAR. Light blue shading in the basemap
signifies open water bodies. The upper northeast corner of the scene north of the Yukon River is not classified as tundra [41] and
had high cloud cover in the Landsat 8 scene; cloud masking effectively removed the only fire perimeter in the record from this
region, the 1972 Engineer Lake Fire.

VWCbulk [47]. The ground surface settles over the
thaw season since liquid water takes up less volume
than ice, and this subsidence is quantified with L-
band interferometric SAR (InSAR). InSAR requires
two temporally separate SAR acquisitions within the
thaw season, which were acquired on 17 June and 17
September 2017 for the YKD. The retrieval algorithm
estimates the remainder of the variables from spatially
co-registered L-band and P-band SAR using a phys-
ical model that describes the vertical distribution of
organic matter, soil porosity, and soil water [20, 47–
49]. All variables have a 30 m spatial resolution. The
PDO team filtered out atmospheric noise, masked
water bodies, and used the in situ data described in
section 2.2 to validate the products [48].

2.4. Landsat 8 variables
We calculated surficial indices from Landsat
Collection-2 Analysis Ready Data surface reflectance
[50]. We selected the scene for the space-for-time
substitution based on the following criteria: (1) an
acquisition date between June and August 2017, (2)
coverage of the entire study area on one date, and (3)
minimal clouds. Summer timing is contemporaneous
with the SAR and corresponds with the maximum
available light for remote sensing [18], active layer
thaw season, absence of snow, and vegetation grow-
ing season. Dense smoke was not a concern since
no fires were recorded within the study area during

summer 2017 [51]. These criteria resulted in one
possible scene acquired by the Landsat 8 Operational
Land Imager and Thermal Infrared Sensor (OLI-
TIRS) on 5 June. The resulting swath is approxim-
ately 150× 95 km with the native resolution of 30 m.
We applied a cloud mask, removing pixels with sur-
face reflectance values >0.09 in the visible blue band
(Landsat 8 B2) [52]. We masked all surface water,
cloud shadows, and possible snow or ice by removing
all pixels with shortwave infrared (SWIR1; Landsat 8
B7) values<0.09. For bothmasks, we performed iter-
ations to determine the most accurate thresholds. We
calculated the indices summarized in table 1: normal-
ized difference vegetation index (NDVI), normalized
difference moisture index (NDMI), normalized burn
ratio (NBR), tasseled cap transform (TCT brightness,
greenness, and wetness), and broadband shortwave
surface albedo (hereafter ‘albedo’). Near-infrared
(NIR; Landsat 8 B5) was additionally analyzed since
it is present in all indices.

2.5. Burn perimeters and classifications
Burn perimeter polygons were obtained by merging
records from the Alaska Large Fire Database [60] and
Monitoring Trends in Burn Severity [61] database
from the start date of each database (1942 [62] and
1984 [63], respectively) through 2017 as described in
Yoseph et al [64]. Merged records span from 1953 to
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Table 1. Surficial indices calculated from Landsat 8 OLI-TIRS surface reflectance bands with equations and citing literature. For Landsat
8, B2 is visible blue wavelengths (0.450–0.51 µm), B3 is visible green (0.53–0.59 µm), B4 is visible red (0.64–0.67 µm), B5 is near
infrared (NIR; 0.85–0.88 µm), B6 is shortwave infrared (SWIR1; 1.57–1.65 µm), and B7 is shortwave infrared (SWIR2; 2.11–2.29 µm).
Broadband shortwave surface albedo was approximated from the Landsat 8 surface reflectance band (‘narrowband’) data using the
coefficients derived for Landsat 7 [53], updated with the Landsat 8 bands of the corresponding wavelength ranges.

Index Name Equation Citing literature

NDVI Normalized
difference
vegetation index

NDVI= (B5−B4)/(B5+B4) [54]

NDMI Normalized
difference
moisture index

NDMI= (B5−B6)/(B5+B6) [55–57]

NBR Normalized
burn ratio

NBR= (B5−B7)/(B5+B7) [58]

TCT brightness Tasseled cap
transform
brightness

TCTbright = (B2 ∗ 0.3029)+ (B3 ∗ 0.2786)+ (B4 ∗ 0.4733)+
(B5 ∗ 0.5599)+ (B6 ∗ 0.508)+ (B7 ∗ 0.1872)

[59]

TCT greenness Tasseled cap
transform
greenness

TCTgreen = (B2 ∗−0.2941)+ (B3 ∗−0.243)+ (B4 ∗−0.5424)+
(B5 ∗ 0.7276)+ (B6 ∗ 0.0713)+ (B7 ∗−0.1608)

[59]

TCT wetness Tasseled cap
transform
wetness

TCTwet = (B2 ∗ 0.1511)+ (B3 ∗ 0.1973)+ (B4 ∗ 0.3283)+
(B5 ∗ 0.3407)+ (B6 ∗−0.7117)+ (B7 ∗−0.4559)

[57, 59]

Albedo Broadband
shortwave
surface albedo

αshort=((0.356∗B2)+(0.130∗B4)+(0.373∗B5)+(0.085∗B6)+
(0.072∗B7)−0.0018)/1.016

[53]

2016 in the YKD since no burnswere recorded in 2017
[51].

We defined burned areas as regions that burned
once within the record. We defined reburned areas
as regions where burn perimeter polygons from sep-
arate fire years overlapped, and we analyzed these
separately from burned areas. No area in this record
was recorded to have burned more than twice. We
considered unburned areas as any area that was not
recorded to have burned during the time span of the
burn perimeter record. We defined a 1 km unburned
buffer surrounding each burn perimeter, removing
any regions that overlapped with other burn perimet-
ers. We experimented with several buffer widths and
selected the 1 km buffer since it yielded a pixel sample
size most similar to the number of pixels within the
burned polygons without extending so far from the
burn perimeter that it sampled a dissimilar landscape.
The number of burn perimeters and pixels by fire year
is presented in the supplement (tables S1 and S2).

2.6. Burn classification and post-fire trajectory
analyses
Weperformed all analyses throughout in Python [65–
67]. We calculated zonal statistics for each variable,
fire year, and burn classification. For each variable,
we aggregated all fire years by burn classification
and tested for statistical significance using analysis
of variance (ANOVA) with post-hoc Tukey’s hon-
est significant difference (HSD) test with a signific-
ance level of α= 0.05. Several variables, particularly
VWC and WTD, deviate significantly from normal
distributions, suggesting that the mean may not best

describe the data. However, given that tens to hun-
dreds of thousands of pixels are sampled for each clas-
sification, parametric statistics are justified under the
Central Limit Theorem [68]. Histograms and non-
parametric statistics can be found in the supplement
(figures S1 and S2; tables S3 and S4).

By fire year, we tested the significance of the dif-
ference between pairs of burned and unburned buf-
fer statistics for each variable at a level of signific-
ance of α= 0.05. We used Welch’s T-tests to test
whether the burned area mean was significantly dif-
ferent from the unburned area mean [69]. We per-
formed Mood’s median tests to test whether the
burned and unburned medians come from popula-
tions with the same median [70]. For both tests, a
p-value less than 0.05 rejects the null hypothesis and
indicates that there is a significant difference between
the burned and unburned statistics.

We used a space-for-time substitution to model
the post-fire trajectory of remotely-sensed variables
over time [20, 36]. A burn perimeter from x years ago
represents conditions from x years of post-fire recov-
ery. This tests the assumption that all variations in
a variable for a given fire year relative to other fire
years can be attributed to time since burn. This ana-
lysis implicitly assumes that all burned areas respond
identically post-fire; it is only plausible for use in
this region because the pre-burn geophysical and
ecological conditions are approximately homogenous
across the landscape.

We modeled recovery curves for each variable
using non-linear least squares curve fits of the time
since burn (2017 minus fire year) and∆ (the burned
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Table 2. Burned and unburned classification means, standard deviations, and medians for Landsat and SAR variables. All the means and
medians for each variable reject the null hypothesis that the burned and unburned statistic are identical (Welch’s T-test, Mood’s median
test; α= 0.05). Variables presented without units are dimensionless.

Variable Class Mean Standard deviation Median

NBR Burned 0.215 0.153 0.234
Unburned 0.346 0.068 0.343

NDMI Burned −0.043 0.112 −0.029
Unburned 0.056 0.060 0.051

NDVI Burned 0.521 0.079 0.531
unburned 0.561 0.055 0.554

NIR Burned 0.238 0.054 0.237
Unburned 0.286 0.033 0.291

Albedo Burned 0.125 0.021 0.125
Unburned 0.144 0.017 0.147

TCT greenness Burned 0.100 0.039 0.101
Unburned 0.130 0.021 0.130

TCT brightness Burned 0.354 0.041 0.355
Unburned 0.386 0.040 0.394

TCT wetness Burned −0.125 0.028 −0.127
Unburned −0.100 0.021 −0.103

VWC6 (cm
3 cm−3) Burned 0.786 0.129 0.847

Unburned 0.635 0.156 0.626

VWC12 (cm
3 cm−3) burned 0.814 0.114 0.868

unburned 0.687 0.147 0.689

VWC20 (cm
3 cm−3) Burned 0.789 0.092 0.831

Unburned 0.691 0.123 0.704

VWCbulk (cm
3 cm−3) Burned 0.628 0.057 0.628

Unburned 0.595 0.075 0.589

Subsidence (m) Burned 0.032 0.006 0.032
Unburned 0.030 0.005 0.030

ALT (m) Burned 0.551 0.156 0.543
Unburned 0.543 0.159 0.535

WTD (m) Burned 0.157 0.137 0.100
Unburned 0.258 0.179 0.246

area mean minus the unburned area mean). We
determined the most suitable regression by residual
plots and the coefficients of determination (R2) and
calculated 95th percentile confidence intervals. If the
regression line intersected the x-axis, the ‘zero-effect
line,’ this x–intercept was rounded up to the nearest
whole year and termed ‘recovery time’ [18, 25]. The
Landsat 8 scene covered all burn perimeters in the
record, so the fire years ranged from 1953 to 2016
(64–1 years since burn). The airborne SAR swaths are
smaller, and the earliest burn perimeter in the swaths
burned in 1971 (46–1 years since burn).

3. Results

3.1. Burned and unburned classifications
For all variables across both remote sensing data
sources, the burned and unburned classifications
aggregated over all fire years had significantly
differentmeans andmedians (table 2). For all Landsat
variables, subsidence, and WTD, the burned area
means and medians are lower than the correspond-
ing unburned statistics. For all VWC classifications
and ALT, the burned area means and medians are
higher than the corresponding unburned statistics.
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Figure 2. Recovery curves for Landsat 8 variables. Grey points represent the difference (∆) between the average variable value in
the burned area and the average value in the surrounding 1 km unburned buffer for each burn perimeter year; standard error
values are small and presented in table S5. Red points indicate years when there is no statistically significant difference between
the burned area mean and the 1 km unburned buffer mean when tested with Welch’s T-test (α= 0.05). The black lines are
exponential decay regressions and grey shading indicates 95th percentile confidence intervals; regression equations can be found
in table S6. Solid blue vertical lines indicate when a regression intersects the x-axis, or zero-effect line, and this is indicative of
recovery. Dotted blue vertical lines indicate where regressions in (c) NDMI and (d) NBR appear to converge with the x-axis due to
the regression equation. Albedo (a) and TCT brightness (e) regressions asymptote at∆<0.

While an increase in VWC is observed at all depths,
it is most pronounced at the surface in VWC6 and
decreases in magnitude as VWC is integrated over
more of the active layer to be lowest in VWCbulk.

3.2. Space-for-time substitution recovery curves
All Landsat variables in the burned areas show the
greatest deviation from the unburned buffer in the
first year post-fire with recovery curves that gradually
trend towards zero difference over time (figure 2). All
Landsat variables were best fit by exponential decay
regressions. NDMI and NBR were fit with exponen-
tial decay regressions without a vertical shift para-
meter to overcome unmitigable overflow errors in
Python. NDMI and NBR regressions were forced to
approach zero, or ‘perfect recovery,’ over time, but
bothwerewell fit by themodel. Coefficient of determ-
ination values across variables indicate that 74%–
91% of the variation in ∆ post-fire can be explained
by the time since burn with the exponential decay
models.

Indices that quantify similar phenomena—such
as vegetation health and density, surface wetness,
and surface reflectance and albedo—exhibited sim-
ilar recovery behavior. NDVI and TCT greenness
reached the zero-effect line 10 and 16 years post-
fire, respectively (figures 2(b) and (f)). NDMI and
TCT wetness, had longer recovery times of 34
and 24 years, respectively (figures 2(c) and (g)).
NBR is indistinguishable from the x-axis 28 years
since burn (figure 2(d)). NIR crossed the zero-effect
line at 25 years since burn (figure 2(h)). Neither
model representing surface reflectivity—albedo nor

TCT brightness—converged with the zero-effect line
(figures 2(a) and (e)). However, the 95th percent-
ile confidence intervals reached the zero-effect line
within 15–20 years post-burn, and both regressions
asymptote at very small, negative values within two
decades. Conversely, NDVI, TCT greenness, TCT
wetness, andNIR regressions exceeded the zero-effect
line within the 64-year extent.

The SAR-derived variables were fit with lin-
ear regressions as the most parsimonious model
(figure 3).With the exception of subsidence, all recov-
ery curves showed that burned area means did not
recover to unburned levels within 46 years post-burn
(figure 3). Subsidence reached the zero-effect line
29 years post-fire, and all∆ values are less than 5mm.
None of the slopes of the regressions were signific-
antly different from zero, and the 95th percentile
confidence intervals indicate that negative or posit-
ive trends over time are possible for all variables. The
coefficients of determination indicate that time since
burn explains less than 4.5% of the variability in ∆
from the mean.

For all VWC depths of integration and all but
two fire years, VWC is higher in the burned areas
than unburned buffers (figures 3(a)–(d)). The regres-
sions indicate a return to the zero-effect line over
time scales of 110–320 years, but the R2 values are
very low, the slopes are insignificant, and this extra-
polates far beyond the study period. The regres-
sions for both ALT and WTD indicate decreases
in burned areas relative to unburned and do not
recover over the 46 year time period (figures 3
(e) and (f)).
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Figure 3. Recovery curves for the SAR-derived variables. Grey points represent the difference (∆) between the average variable
value in the burned area and the average value in the surrounding 1 km unburned buffer for each burn perimeter year; standard
error values are small and presented in table S7. All VWC values (a)–(d) are in units of cm3 cm−3. Subsidence (e), ALT (f), and
WTD (g) are in units of m. Red points indicate years when there is no statistically significant difference between the burned area
mean and the 1 km unburned buffer mean when tested with Welch’s T-test (α= 0.05). The black lines are linear regressions and
grey shading indicates the 95th percentile confidence intervals. Regression equations are in table S8. Solid blue vertical lines
indicate when a regression intersects the x-axis, or zero-effect line, and this is indicative of recovery.

Figure 4. Histograms of VWCbulk and ALT from ((a), (c)) SAR for all fire years and ((b), (d)) in situ observational data collected
in 2016 in and around 2015 fire perimeters. The first column ((a), (c)) shows burned, unburned buffer, and reburned (expanded
in insets due to lower pixel counts) classification distributions relative to the distribution of the entire SAR swath for (a) VWCbulk

and (c) ALT. The second column ((b), (d)) depicts the burned and unburned in situ (b) VWCbulk and (d) ALT distributions. For
all panels, the dotted lines signify the means for each classification listed in the legend, denoted by µ or x̄, and all means for all
variables are statistically significantly different from each other at α= 0.05 by ((a), (c)) ANOVA with post-hoc Tukey’s HSD test
or ((b), (d)) Welch’s t-test.
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3.3. Remotely-sensed and in situ ALT and VWC
SAR-based VWCbulk shows a bimodal distribution
across the entire raster with a lower peak centered
around 0.55 cm3 cm−3 and an upper peak at
0.63 cm3 cm−3 (figure 4(a)). The unburned VWCbulk

mirrors this bimodal distribution, but the burned and
reburned classifications, representing all fire years,
have unimodal distributions with the most common
VWCbulk values corresponding with the upper peak
of the full raster distribution. All SAR-based VWC
variables show bimodal distributions across the entire
swath and unburned classification but unimodal dis-
tributions for the burned and reburned classifications
that correspond with the upper peak of the full raster
bimodal distribution (figure S2). The in situVWCbulk

data indicates a slight bimodality in the unburned
distribution, with peaks at approximately 0.47 and
0.57 cm3 cm−3 (figure 4(b)). The burned sample
distribution is unimodal with a peak at the mean
0.55 cm3 cm−3, 0.01 cm3 cm−3 higher than that of
the unburned samples.

The SAR-based ALT distribution is unimodal
and approximately normal with a mean of 56 cm
(figure 4(c)). Mean ALT in burned areas across
all fire years is 55 cm, 1 cm higher than that of
unburned areas. The mean ALT for reburned areas
is 46 cm, lower than all other classifications. The
in situ burned samples had an average ALT of 68 cm,
8 cm deeper than the unburned average ALT of 60 cm
(figure 4(d)).

3.4. Relationship between ALT and VWCbulk
There is a significant negative correlation between
VWCbulk and ALT for the burned in situ samples,
but there is no significant correlation for unburned
samples (figure 5). For burned samples, VWCbulk

explains nearly 40%of the variation inALT,with drier
active layers correlated with deeper ALT.

4. Discussion

Surficial indices, primarily indicative of vegetation,
recovered within 35 years post-fire while VWC, ALT,
and WTD did not recover to unburned tundra levels
within the 46 year record analyzed. In the in situ
data, we observed deeper ALT and higher VWCbulk

in burned areas than unburned areas and a signific-
ant negative relationship between ALT and VWCbulk

in burned areas. These results indicate that subsur-
face geophysical changes due to fire can persist despite
apparent spectral recovery on the surface.

The interpretation of these results is, in part,
shaped by the space-for-time substitution. The impli-
cit assumptions of homogenous burn severities
and pre-burn conditions across fire perimeters are
broadly true for the YKD, allowing this analysis to
use remote sensing to extend the period studied bey-
ond fieldwork records. However, thesemodels are not
time series trajectories of one location sampled over

Figure 5. In situ VWCbulk and ALT for burned and
unburned observations measured in August 2016 in and
around 2015 fire perimeters. Linear regression equations
are presented in table S9.

time. Additionally, in situ measurements sample the
burned and unburned conditions, but they do not
represent colocated pre-burn and post-burn pairs of
data. Edge effects, including the horizontal transport
of water or heat from the burned areas, could affect
the proximate unburned buffer regions. However,
this was not observed, and the buffer width allows for
significant distance from each fire perimeter. These
plausible implications from the methods demon-
strate the need for repeated data collection over time
to understand the pre-burn conditions and post-
burn trajectories of tundra, especially as the climate
changes. We utilized a combined approach of two
remote sensing data sources and in situ samples to
build a robust picture of tundra recovery post-fire
despite these limitations.

4.1. Vegetation succession
Indices indicative of vegetation greenness, health, and
density recovered fastest out of all variables studied.
NDVI and TCT greenness reached the zero-effect line
10 and 16 years post-fire, respectively. In the YKD,
rapid vegetation reestablishment is primarily driven
by the resprouting of vascular plants and Sphagnum
moss that survived the fires [3]. Although vegeta-
tion cover is discontinuous for several years post-fire,
Frost et al found that functional diversity recovered
to unburned levels approximately a decade post-fire,
corresponding with the greenness results found here
[3].

For both NDVI and TCT greenness, the recov-
ery curves significantly exceeded the zero-effect line
approximately 30 years post-burn, indicating that
vegetation greenness and density are higher in the
burned areas than the surrounding buffer after initial
recovery. Two potential causes are nutrient availab-
ility and vegetation community shift. Increased ALT,
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elevated nutrient availability, and warmer soil tem-
peratures post-fire can promote vegetation growth
beyond that in the unburned condition [13]. Over
time, this effect would diminish as the active layer
recovers and nutrients are consumed, resulting in
a return to the zero-effect line, although the expo-
nential decay models used here prevent this curve
shape. Second, community shifts, particularly shru-
bification and a reduction in lichen cover, can
occur post-fire [3, 31, 71]. Frost et al found that
while shrub cover increased post-fire, this primarily
reflected resprouting of existing shrubs; recruitment
opportunity was relatively low since the peat in the
YKD remained intact during the fire [3]. Anderson
et al found a significant increase in shrub cover in
2015 burns relative to historic burns in the YKD
[28].

A variable lag time in the recovery of other
surficial indices demonstrates important ecological
feedbacks that result from successional processes.
Vegetation and surface wetness indices, NDMI and
TCT wetness, reached the zero-effect line at 34 and
24 years, respectively. Neither model for surface
albedo nor TCT brightness converged with the zero-
effect line, but both recovery curves asymptote at
very small, negative values within two decades. Frost
et al note that lichens, the predominant fire fuel in
the YKD, take nearly four decades to reestablish [3].
Vegetation regrowth is rapid, but the plant com-
munity composition does not appear to return to pre-
fire levels for many decades.

Additionally, our models of greenness recovery
may underestimate the recovery time of these indices
due to the imagery acquisition date. The Landsat
8 scene was acquired in early June, when the act-
ive layer remains mostly frozen and before veget-
ation phytomass has approached its midsummer
peak. As a result, the burned area greenness would
exceed the unburned buffer area earlier than veget-
ation community recovery since vascular plant func-
tional types—particularly graminoids and deciduous
shrubs—compose a larger proportion of the live cover
in post-fire communities than in unburned, lichen-
dominated tundra.

Conversely, fires often terminate at gullies or the
edges of surface water, both areas of higher mois-
ture with more vegetation. As such, the 1 km buffer
zones may disproportionately represent high NDVI,
NDMI, TCT greenness, and TCTwetness. This would
set the threshold for ‘recovery’ higher than the ini-
tial pre-burn conditions and could result in artifi-
cially long recovery times. The effect of this is likely
minimal because the 1 km buffers excluded water
bodies and sampled large quantities of pixels beyond
the small-scale features. The balance of these phe-
nomena is indicated by recovery times that match
others presented in literature, but it is important to
accurately quantify these timescales since vegetation

communities have broad impacts on permafrost ther-
modynamics, hydrology, biogeochemistry, and eco-
system services.

4.2. ALT
In situ observations indicate an 8± 3 cm deeper ALT
one year post-burn relative to unburned tundra. For
SAR-based ALT, the burned area ALT is 1 cm deeper
on average across all fire years than unburned areas
(55 ± 16 cm and 54 ± 16 cm, respectively), and
ALT is shallower in burned areas than the unburned
buffer for most fire years. ALT uncertainty for the
SAR-based ALT is higher in burned areas (29 cm)
than for unburned areas (26 cm; figure S3). The
high SAR-based ALT uncertainty, especially immedi-
ately post-burn, could obscure changes in ALT of the
magnitude observed in the in situ data. In the YKD,
Michaelides et al found using a space-for-time sub-
stitution with satellite SAR that ALT increased post-
burn to a maximum of 26 cm and returned to the
background level approximately 25 years post-fire as
vegetation recovered [20]. Modeled seasonal subsid-
ence in the space-for-time substitution presented here
reached the zero-effect line 29 years post-fire which
approximates the timeline ofMichaelides et al, but the
modeled regression is not statistically significant and
indicates that time since burn explains less than 5%
of the variation in∆ for seasonal subsidence.

It seems likely that the SAR-based recovery curve
for ALT presented here does not adequately charac-
terize ALT recovery over time, and, in part, this may
be due to vegetation not being explicitly accounted
for in the SAR joint retrieval despite representing
the top of the soil column [72]. Removing 10 cm of
the organic layer from the surface of the soil column
while maintaining an active layer of the same thick-
ness would result in 10 cm of newly thawed perma-
frost (figure 6). Moubarak et al found the average
burn depth in 2015 fire perimeters in the YKD to be
10 cm [14], which corresponds with our field obser-
vations (figure S4). Over time as vegetation grows
back and surface albedo recovers, and organic mat-
ter reaccumulates and provides insulation, ALT may
decrease at a similar rate, resulting in the approxim-
ately constant ALT trajectory over time when calcu-
lated from SAR, although it seems likely that the high
ALT uncertainty could obscure these dynamics.

In burned areas, in situ ALT was negatively cor-
related with VWCbulk, indicating that wetter active
layers are correlated with shallower ALT, and average
VWCbulk was higher in burned areas. This correlation
has previously been attributed to the high latent heat
of fusion of water [42]. However, the unburned in situ
samples show no significant trend between VWCbulk

and ALT. This suggests that ALT is more sensitive to
VWCbulk in burned areas than in unburned areas, and
higher soil moisture may moderate post-fire energy
balance effects, such as lower albedo due, to the high
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latent heat of fusion of water, thereby maintaining
shallower active layers [42]. Drier active layers in
burned areas are observed to be deeper, and this cor-
relation should be investigated further to understand
whether increased ALT post-fire is causing regional
drainage and thus a decrease in soil moisture or
a decrease in soil moisture is reducing the energy
required to freeze and thaw the active layer and thus
resulting in deeper thaw depths.

4.3. Soil moisture
VWC was higher and WTD was shallower in the
burn perimeters, and neither recovered in the 46-year
study period. This effect is most pronounced in near-
surface VWC. The WTD moved closer to the surface
by an average of 10 cm post-fire and did not return
to the zero-effect line over the study period. While
previous work has documented increased soil mois-
ture post-fire in the tundra [73], the mechanism is
generally attributed to a decrease in transpiration due
to vegetation loss in the fires, as in the boreal forest
[27, 74]. However, significant transpiring vegetation
appears to recover to, or even exceed, the pre-burned
level on timescales less than two decades.

Again, interpretation of these results depends, in
part, on the SAR joint retrieval methodology [72].
The retrieval algorithm uses the same soil porosity
profile for all pixels, which may introduce bias when
comparing burned and unburned areas. However, the
impact of a fixed porosity curve appears minimal
because the estimated VWC agrees with in situ data
within uncertainty. The estimated WTD represents
the most uncertain of the estimated subsurface para-
meters with few validation data points. Overall, the
PDOproduct still represents high-quality geophysical
observations that can be analyzed despite fire history.

We propose that the increase in VWC at shal-
low depths and decrease in WTD results from the
burn depth in the organic layer. An average burn
depth of 10 cm corresponds with the 10 cm difference
between burned and unburned WTD in this study
(figure 6). Burn depth encompasses the loss of surface
lichens,moss, and peat. It is not uniform and is highly
dependent on the surface vegetation. Sphagnum, for
example, generally remained intact in the 2015 fires
due to its water holding capacity. Lichens, on the
other hand, have been a primary fuel for fires in the
YKD and are observed to be reduced significantly
post-fire and recover slowly over decades [3, 29, 30].

We hypothesize that the slow reestablishment of
lichens, and the even slower accumulation of peat,
contributes to the persistence of the shallower WTD
and higher VWC. These changes in the surface veget-
ation and organic soil alter VWC since they drive
water holding capacity in the upper soil column.
The organic layer—comprised of a gradient from live
vegetation to organic soil—has a higher porosity than
the mineral soil it overlays (figure 6). When the fire

Figure 6. Theoretical porosity profile of soil column before
burn (a) and recently post-burn (b) late in the thaw season
when the active layer has reached the maximum thaw
depth. After the burn, the organic layer thickness (OLT)
decreased by 10 cm (figure S4 and [14]), the water table
depth (WTD) decreased by 10 cm (this study), and active
layer thickness (ALT) increased by 26 cm [20].

burns off the lichen, other vegetation, and some peat,
this reduces the water holding capacity of the top
layer such that the lower porosity substrates beneath
become more readily saturated, assuming the same
amount of applied water [73]. While an increase in
VWC is observed at all depths, it is most pronounced
in VWC6, when the top 6 cm are depth-integrated,
and smallest in VWCbulk. Wig et al also observed this
effect when analyzing all of PDO flight lines across
Alaska and Canada [75].

Depending on the magnitude of the environ-
mental change, when coupled with long recovery
timelines and increased VWC post-fire, there is the
possibility of state changes in one or more eco-
system components such as the vegetation com-
munity, underlying permafrost, or fire regime. While
VWCbulk negatively correlates with ALT, high near-
surface water saturation increases the thermal con-
ductivity of the top of the soil column, conduct-
ing heat more easily from the atmosphere [42]. The
highest methane emissions in the YKDwere observed
in burned areas, especially where burns terminated
at water bodies where the water table is nearest the
surface [64, 76].Higher near-surfaceVWCand a shal-
lower WTD influence vegetation, ALT, energy bal-
ance, and carbon cycling.

5. Conclusions

Our analysis indicates that the long-term increase
in VWC post-fire results from shallower WTD due
to the reduction of the organic layer thickness and
resulting changes in the porosity profile. VWC was
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higher in burned areas than unburned areas and
remained so for the 46 years represented by the study.
Elevated VWC is most pronounced in the shallower
VWC products, indicating that the largest magnitude
changes in soil moisture occurred near the surface.
WTD appeared 10 cm closer to the surface in burned
areas, corresponding to the recorded average burn
depth of 10 cm for the 2015 fires in the YKD. In situ
ALT is negatively correlated with VWCbulk, suggesting
that ALT is more sensitive to soil moisture in burned
areas than unburned areas, and higher soil moisture
may moderate the energy balance effects of lower
post-fire albedo. The SAR-based ALT derived using
the space-for-time substitution did not show a signi-
ficant post-fire trend, andwe suggest that the recovery
dynamics described by previous literature and obser-
vations were obscured by the joint retrieval methodo-
logy. Vegetation greenness recovers in little more than
a decade, indicating that changes in transpiration
alone cannot sustain the higher VWC. Surficial spec-
tral recovery of over 30 years indicates the importance
of ecological feedbacks associated with successional
processes. While some surficial indices recover rap-
idly, vegetation communities, VWC, andWTDdonot
recover within the 46 year study period and appear
linked to the long recovery time of the organic layer
and lichen, as well as the potential for shrubification.
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